

Java GUI Database and UML

Hands on Lab

September2011

For the latest information, please see bluejack.binus.ac.id

i | P a g e

Information in this document, including URL and other Internet Web site references, is subject to

change without notice. This document supports a preliminary release of software that may be

changed substantially prior to final commercial release, and is the proprietary information of

Binus University.

This document is for informational purposes only. BINUS UNIVERSITY MAKES NO

WARRANTIES, EITHER EXPRESS OR IMPLIED, AS TO THE INFORMATION IN THIS

DOCUMENT.

The entire risk of the use or the results from the use of this document remains with the user.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting

the rights under copyright, no part of this document may be reproduced, stored in or introduced

into a retrieval system, or transmitted in any form or by any means (electronic, mechanical,

photocopying, recording, or otherwise), or for any purpose, without the express written

permission of Binus University.

Binus Universitymayhave patents, patent applications, trademarks, copyrights, or other

intellectual property rights coveringsubject matter in this document. Except as expressly

provided in any written license agreement from Binus University, the furnishing of this document

does not give you any license to these patents, trademarks, copyrights, or other intellectual

property.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail

addresses, logos, people, places and events depicted herein are fictitious, and no association

with any real company, organization, product, domain name, email address, logo, person, place

or event is intended or should be inferred.

© 2011Binus University. All rights reserved.

The names of actual companies and products mentioned herein may be the trademarks of their

respective owners.

ii | P a g e

Table of Content

OVERVIEW ... iii
SYSTEM REQUIREMENT .. iv
GUI Container .. 1
GUI Layout Manager ... 10
GUI Basic Component ... 22
GUI Intermediate Component .. 37
GUI Advanced Component ... 50
Event Driven Programming .. 63
Database Access .. 88
Database Operation .. 107
Java Applet ... 120
UML Tools ... 128
UML Design ... 146

iii | P a g e

OVERVIEW

Chapter 01

• GUI Container

Chapter 02

• GUI Layout Manager

Chapter 03

• GUI Basic Component

Chapter 04

• GUI Intermediate Component

Chapter 05

• GUI Advanced Component

Chapter 06

• Event Driven Programming

Chapter 07

• Database Access

Chapter 08

• Database Operation

Chapter 09

• Java Applet

Chapter 10

• UML Tools

Chapter 11

• UML Design

iv | P a g e

SYSTEM REQUIREMENT

 Hardware:

o Minimum:

1.6 GHz CPU, 192 MB RAM, 1024x768 display, 5400 RPM hard disk

o Recommended:

2.2 GHz, 384 MB, 1280x1024 display, 7200 RPM or higher.

o On Windows Vista:

2.4 GHz CPU, 768 MB RAM

 Software:

o NetBeans IDE 6.9.1

o 1.3 GB of available disk space for the full install

1 | P a g e

Chapter 01

GUI Container

2 | P a g e

1.1. Graphical User Interfafce (GUI) Classes

GUI classes are classified into 3 groups: Component Classes, Container Classes, and

Helper Classes.

1.2. Component Classes

Component Classes are an object that can be displayed on the screen, such as JButton,

JTextField, JComboBox, etc.

1.3. Container Classes

Container Classes are a generic Abstract Window Toolkit (AWT) container object that

can contain component classess. Components added to a container are tracked in a list.

The order of the list will define the components' front-to-back stacking order within the

container. If no index is specified when adding a component to a container, it will be

added to the end of the list (and hence to the bottom of the stacking order).

Example: Create object Container class and set Container Layout to Border Layout.

(Note: We will discuss about Layout Manager in the next chapter)

1.4. Helper Classes

Helper classes are used to describe the properties of GUI components, such as graphics

context, colors, fonts, and dimension.

1.5. JFrame

JFrame class is an example of Container Class. It can contain other component classes.

Default Layout JFrame is Border Layout. The frame is not displayed until

setVisible(true) method is invoked.

Example: Create object JFrame

3 | P a g e

1.6. JInternalFrame

A lightweight object that provides many of the features of a native frame, including

dragging, closing, becoming an icon, resizing, title display, and support for a menu bar.

The JInternalFrame content pane is where you add child components. Generally, you add

JInternalFrames to a JDesktopPane. The UI delegates the look-and-feel-specific actions

to the DesktopManager object maintained by the JDesktopPane.

Example: Create object JInternalFrame

1.7. JPanel

JPanel is a generic lightweight container. Default Layout JPanel is Flow Layout.

Example: Create object JPanel

1.8. Exercise

a. Task 01 - Create Project JAVA in Netbeans

1. Run Netbeans from Start Menu

2. Open Menu File -> New Project or Click icon on bottom menu Edit

3. On Project Window, choose Java on Categories and Java Application on Projects

 then Next

4. Setting Project name, Project Location and don‘t forget to check ―Create Main

Class‖ like picture below

4 | P a g e

5. Then Press Finish

6. Finally, your project has been created like picture below, double click on file

Main.java if you want to modify code

b. Task 02 – Introduction IDE Netbeans

1. Run program press F6

2. Netbeans can do autocomplete to help Programmer in order to import library and

complete the syntax easily like example below:

Type ―JF‖ and press CTRL + Space on keyboard, and the choices will be shown

below.

5 | P a g e

If you press enter on JFrame, the result will be shown below

As you see, if you use autocomplete, library will be imported automatically.

c. Task 03 - Create JFrame and Set Properties JFrame

1. Create object JFrame, and give the name of object is ―frame‖

Explanation:

After you create object JFrame named frame, furthermore you will use the object

to do something.

2. General Setting properties JFrame

6 | P a g e

Explanation:

 setTitle(String title) is used to give title on JFrame.This method inherited

from class java.awt.Frame.

 setSize(int width, int height) is used to set your size of JFrame. This method

inherited from class java.awt.Window.

 setLocationRelativeTo(Component c) is method inherited from class

java.awt.Window. Fill parameter with ‗null‘ to located JFrame to center of

window on the screen.

 setDefaultCloseOperation(int operation) is method to set the operation that

will happen by default when the user initiates a "close" on this frame. Fill

parameter with some condition such as :

 JFrame.EXIT_ON_CLOSE

The exit application default window close operation. If a window has this

set as the close operation and is closed in an applet, a SecurityException

may be thrown. It is recommended you only use this in an application.

 JFrame.DISPOSE_ON_CLOSE

The dispose-window default window close operation.

 JFrame.DO_NOTHING_ON_CLOSE

The do-nothing default window close operation.

 JFrame.HIDE_ON_CLOSE

The hide-window default window close operation.

d. Task 04 – Using Container Class

1. Create object Container and copy content from frame into object Container

Explanation:

Method getContentPane() is used to returns the contentPane object for this

frame.

mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/java/lang/String.html
mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/java/awt/Frame.html
mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/java/lang/String.html
mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/java/lang/String.html
mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/java/awt/Window.html
mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/java/awt/Component.html
mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/java/awt/Window.html
mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/java/awt/Component.html
mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/javax/swing/JFrame.html#setDefaultCloseOperation(int)
mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/java/lang/String.html
mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/javax/swing/JFrame.html#EXIT_ON_CLOSE
mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/javax/swing/WindowConstants.html#DISPOSE_ON_CLOSE
mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/javax/swing/WindowConstants.html#DO_NOTHING_ON_CLOSE
mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/javax/swing/WindowConstants.html#HIDE_ON_CLOSE

7 | P a g e

2. Set layout of Container with Border Layout

Explanation:

Set the layout manager for this container.

The conclusion is all content of JFrame will be copied into Container so if you

use JFrame and Container at the same time you will see no different between

Container and JFrame.

e. Task 05 - Create JInternalFrame

Generally, you add JInternalFrames to a JDesktopPane. The UI delegates the look-

and-feel-specific actions to the DesktopManager object maintained by the

JDesktopPane.

1. Create object JDesktopPane and give the name of object is ―dp‖

Explanation:

After you make object JDesktopPane, furthermore you will use the object to do

something.

2. Create object JInternalFrame and give the name of object is ―intframe‖

3. Add object JInternalFrame into JDesktopPane

Explanation:

Method add(Component comp) is used to add other component from source into

destination component. Which is in example, object from JinternalFrame is added

into object from JDesktopPane. This method inherited from class

java.awt.Container.

mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/java/awt/Component.html
mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/java/awt/Container.html

8 | P a g e

4. Add object JDesktopPane into Container

Explanation:

Method add(Component comp) is used to add other component from source into

destination component. Which is in example, object from JDesktopPane is added

into object from class Container. This method inherited from class

java.awt.Container.

If you run (F6) program, you will be shown below

f. Task 06 - Create JPanel

1. Create object JPanel

Explanation:

After you create object JPanel, furthermore you will use the object to do

something.

mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/java/awt/Component.html
mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/java/awt/Container.html

9 | P a g e

2. Set Background JPanel will give Color Background JPanel

 Explanation:

Method setBackground(Color bg) is used to set the background color of this

component. The background color is used only if the component is opaque, and

only by subclasses of JComponent or ComponentUI implementations. Direct

subclasses of JComponent must override paintComponent to honor this property.

This method inherited from class javax.swing.JComponent.

It is up to the look and feel to honor this property; some may choose to ignore it.

3. Add JPanel to Container

 Explanation:

Method add(Component comp) is used to add other component from source into

destination component. Which is in example, object from JPanel is added into

object from class Container. This method inherited from class

java.awt.Container.

If you run (F6) program, the result will be shown below

mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/java/awt/Color.html
mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/javax/swing/JComponent.html
mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/java/awt/Component.html
mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/java/awt/Container.html

10 | P a g e

Chapter 02

GUI Layout Manager

11 | P a g e

2.1 Layout Manager

Swing provides many standard components to make GUI like button, textfield, etc. This

component is built by Model View Controller (MVC) Concept.

Swing provides Container that can accept component. To arrange size and position of

component, can be used Layout Manager. If Layout Manager is null then position and

size of component will be given by programmer. Generally layout that always used

areFlowLayout, BorderLayout, and GridLayout.

2.2 Border Layout

Arrange component in fixed position based on cardinal directions : NORTH, EAST,

SOUTH, WEST and CENTER.

Generally, there are 2 constructors that always be used :

Parameter

int hgap : Horizontal gap between components

int vgap : Vertical gap between components

12 | P a g e

Example Border Layout

Source Code:

13 | P a g e

2.3 Grid Layout

Arrange component in grid position (Matrix)

Generally, there are 3 constructors that always be used:

Parameter

int rows: the number of rows

int cols: the number of columns

int hgap: Gap horizontal between components

int vgap: Gap vertical between components

Example Grid Layout

14 | P a g e

Source Code:

2.4 Flow Layout

Arrange component position from left to right and put next component on new row if the

width of panel is not enough.

Generally, there are 2 constructors that always be used:

15 | P a g e

Parameter

int align : Fill with FlowLayout.CENTER, FlowLayout.RIGHT, FlowLayout.LEFT,

FlowLayout.LEADING, FlowLayout.TRAILING

int hgap : Gap horizontal between components

int vgap : Gap vertical between components

Example Flow Layout

Source Code:

16 | P a g e

2.5 Absolute Layout

AbsoluteLayout is a LayoutManager that works as a replacement for "null" layout to

allow placement of components in absolute positions.

2.6 How to add Layout to Component

This section will guide you how to give layout step by step.

1. Analyze parameter function that filled by (LayoutManager)

Example:

a. When you create object JPanel, there are 4 constructors that you can use. One of

them is filled by (LayoutManager layout). In this parameter, we can give layout to

JPanel directly when we have created it.

b. The Other way is we can use method setLayout(LayoutManager manager) to

give layout. Some components that have this method are JFrame, JPanel,

JInternalFrame, etc.

2. Fill parameter with layout that you will use

Example:

a. Create JPanel with GridLayout 3 Rows and 4 Cols.

First, use this constructor of JPanel

Second, Fill parameter with GridLayout, there are several constructors of

GridLayout, but generally this constructor is chosen.

Third, Fill parameter with rows and cols

b. Create object JInternalFrame and then change layout with BorderLayout.

First, create object JInternalFrame

mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/java/awt/LayoutManager.html
mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/java/awt/LayoutManager.html
mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/java/awt/LayoutManager.html

17 | P a g e

Second, use method setLayout to change the layout

Third, Fill parameter with BorderLayout

2.7. Exercise

Create Form Register

a. Task 01 - Create Project JAVA in Netbeans

1. Run Netbeans from Start Menu

2. Open Menu File -> New Project or Click icon on bottom menu Edit

3. On Project Window, choose Java on Categories and Java Application on Projects

4. Next Setting Project name, Project Location and don‘t forget check ―Create Main

Class‖ like picture below

18 | P a g e

5. Then Press Finish

6. Finally your project has been created like picture below, double click on file

Main.java if you want to modify code

b. Task 02 - Create JFrame and Set Properties JFrame

1. Create object JFrame

 Explanation:

 Same as Chapter 1

2. Setting properties JFrame

19 | P a g e

Explanation:

 Same as Chapter 1

c. Task 03 – Using Container Class

1. Create object Container

 Explanation:

 Same as Chapter 1

2. Set layout of Container to BorderLayout

 Explanation:

 This code sets the layout manager for this container.

d. Task 04 - Create JPanel

1. Create object JPanel and set Layout

 Explanation:

 In this section, we create two objects JPanel. Why two Objects? Not one or three?

Because my assumption is with only two panels, we can make layout like exercise

03. One panel is set by GridLayout (3 rows,2 cols) and other panel is set by

20 | P a g e

FlowLayout. JPanel with GridLayout will be located on Center of Container, and

the other will be located on South of Container.

2. Set Background Color JPanel

 Explanation:

 In this section, we will set background color of JPanel. First, we will set

background color of ‗panel_center‘ with Green. And second, we will set

background color of ‗panel_south‘ with Yellow.

 You can set with other colors with use class Color.

e. Task 05 - Create Component

1. Create object Component Container direction ―North‖

Explanation:

 In this section, we will create object JLabel named ‗lbl_title‘. JLabel has

constructor JLabel(String text, int horizontalAlignment). So we can directly

make object JLabel with text and set position horizontal of JLabel. About position

horizontal of Jlabel, it will be explained in chapter 3

2. Create object Component Container direction ―Center‖ (panel_center)

 Explanation:

 In this section, we create all components that will be located on center direction of

Container. All of them will be added into ‗panel_center‘

mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/javax/swing/JLabel.html#JLabel(java.lang.String, int)
mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/java/lang/String.html

21 | P a g e

3. Create object Component Container direction ―South‖ (panel_south)

 Explanation:

 In this section, we create all component that will be located on south direction of

Container. All of them will be added into ‗panel_south‘

f. Task 06 – Add Component into JPanel

 Explanation:

 In this section, we will add all components that we have created into each panel. Six

lines earliest are statement to added component into ‗panel_center‘ and two line latest

are statement to added component into ‗panel_south‘

g. Task 07 – Add JPanel into Container and give direction

Explanation:

This section is the final step. We will add each panel into Container based on border

layout, so we need submit direction too when we add component into Container. At

first we add object ‗lbl_title‘ into North Direction. Second add ‗panel_center‘ into

Center Direction, and last add ‗panel_south‘ into South Direction.

22 | P a g e

Chapter 03

GUI Basic Component

23 | P a g e

3.1. JLabel

A JLabel object can display a short text, an image, or both. You can specify where in the

label's display area the label's contents are aligned by setting the vertical and horizontal

alignment. By default, labels are vertically centered in their display area. Text-only labels

are leading edge aligned, by default; image-only labels are horizontally centered, by

default.

3.2. JButton

A JButton was used to give actions when JButton is ―push‖ or clicked.

3.3. JTextField

JTextField is a lightweight component that allows the editing of a single line of text.

3.4. JTextArea

JTextArea is a multi-line area that displays plain text. JTextArea by default doesn‘t show

the scrollbar. If you want to have the scrollbar showed on your JTextArea object, you can

create JScrollPane object to hold an instance of JTextArea. Then the JScrollPane will

handle scrolling for JTextArea.

TextArea has the ability to do line wrapping. This was controlled by the horizontal

scrolling policy. Since scrolling is not done by JTextArea directly, backward

compatibility must be provided another way. JTextArea has a bound property for line

wrapping that controls whether or not it will wrap lines. By default, the line wrapping

property is set to false (not wrapped).

3.5. JRadioButton

An implementation of a radio button, an item that can be selected or deselected, and

which displays its state to the user. Used with a ButtonGroup object to create a group of

buttons in which only one button at a time can be selected.

mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/javax/swing/ButtonGroup.html

24 | P a g e

3.6. JCheckBox

An implementation of a check box, an item that can be selected or deselected, and which

displays its state to the user. By convention, any number of check boxes in a group can be

selected.

3.7. JComboBox

Described as a component which combined from button, drop-down list and editable

field. The user can select a value from the drop-down list, which appears at the user's

request.

3.8. ImageIcon

An implementation of the Icon interface that paints Icons from Images.Images that are

created from a URL or filename.

3.9. Exercise

Create Form Register

25 | P a g e

a. Task 01 - Create Project JAVA in Netbeans

1. Run Netbeans from Start Menu

2. Open Menu File -> New Project or Click icon on bottom menu Edit

3. On Project Window, choose Java on Categories and Java Application on Projects

4. Next Setting Project name, Project Location and don‘t forget check ―Create Main

Class‖ like picture below

5. Then Press Finish

6. Finally your project has been created like picture below, double click on file

Main.java if you want to modify code

26 | P a g e

b. Task 02 - Create JFrame and Set Properties JFrame

1. Create object JFrame

2. Setting properties JFrame

Explanation:

 Same as Chapter 1

c. Task 03 – Using Container Class

1. Create object Container

Explanation :

Same as Chapter 1

2. Set layout of Container to BorderLayout

Explanation:

Sets the layout manager of Container into Border Layout

d. Task 04 - Create JPanel

1. Create object JPanel and set Layout

Explanation:

27 | P a g e

Create object JPanel named ‗panel_north‘ that will be located on North Direction

of Container. Directly set layout into Border Layout when created object. Only

object JLabel (Title) and JLabel (Icon) will be added into ‗panel_north‘.

Explanation:

Create object JPanel named ‗panel_center‘ that will be located on Center

Direction of Container. Directly set layout into Grid Layout with 5 rows and 2

cols when created object. Core components such as JTextField, JRadioButton,

JCheckBox, JComboBox, and JTextArea will be added into this panel.

Explanation:

Create object JPanel named ‗panel_south‘ that will be located on South Direction

of Container. Directly set layout into Flow layout when created object. Only two

components of JButton will be added into this panel.

Explanation:

Create object JPanel named ‗panel_radio‘ that will be located on right side of

Gender. Directly set layout into Flow layout when created object. Only two

components of JRadioButton will be added into this panel.

Explanation:

Create object JPanel named ‗panel_check‘ that will be located on right side of

Hobby. Directly set layout into Grid Layout with 2 rows and 2 cols when created

object. Four components of JCheckBox will be added into this panel.

28 | P a g e

e. Task 05 - Create Component

1. Create object Component Container direction ―North‖

 Explanation:

 Create object JLabel named ‗lbl_title‘. JLabel has constructor JLabel(String text,

int horizontalAlignment). So we can directly make object JLabel with text and set

position horizontal of JLabel. About position horizontal of JLabel, there are

several parameters that can be used.

 JLabel.BOTTOM_ALIGNMENT

 Ease-of-use constant for getAlignmentY(). It specifies an alignment to the

bottom of the component.

 JLabel.CENTER_ALIGNMENT

 Ease-of-use constant for getAlignmentY() and getAlignmentX(). It

specifies an alignment to the center of the component.

 JLabel.LEFT_ALIGNMENT

 Ease-of-use constant for getAlignmentX(). It specifies an alignment to the

left side of the component.

 JLabel.RIGHT_ALIGNMENT

 Ease-of-use constant for getAlignmentX(). It specifies an alignment to the

right side of the component.

 JLabel.TOP_ALIGNMENT

 Ease-of-use constant for getAlignmentY(). It specifies an alignment to the

top of the component.

mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/javax/swing/JLabel.html#JLabel(java.lang.String, int)
mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/java/lang/String.html
mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/java/awt/Component.html#BOTTOM_ALIGNMENT
mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/java/awt/Component.html#CENTER_ALIGNMENT
mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/java/awt/Component.html#LEFT_ALIGNMENT
mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/java/awt/Component.html#RIGHT_ALIGNMENT
mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/java/awt/Component.html#TOP_ALIGNMENT

29 | P a g e

 Explanation:

 Create object ImageIcon named ‗icon‘. You can import file directly that have

picture format such as .jpg, .bmp, .png, .gif and etc. with explain the location of

file in parameter. This section will be explained step by step about directory file.

 First, you have project folder that named by ―Soal03‖ like picture below

 Second, Double click the folder and you will get the location of project

like picture below. This is ―default first directory‖ if you want to import

the file.

 Third, in case, picture file named ―registration.png‖ has been located in

folder ―src‖. So it must be informed the location of file is

―scr/registration.png‖. Don‘t give space or make capital letter when the

name of file is not capital letter because it‘s case sensitive.

30 | P a g e

 Explanation:

 Create object JLabel named ‗lbl_icon‘. JLabel has constructor JLabel(Icon image,

int horizontalAlignment).So we can directly create object JLabel with icon and set

horizontal position of JLabel. Fill parameter Icon image with object ImageIcon

named icon.

2. Create object Component Container direction ―Center‖ (panel_center)

 Explanation:

 Create all objects JLabel as the picture above. JLabel has constructor

JLabel(String text).So we can directly create object JLabel with text.

mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/javax/swing/JLabel.html#JLabel(javax.swing.Icon, int)
mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/javax/swing/Icon.html
mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/javax/swing/JLabel.html#JLabel(java.lang.String)
mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/java/lang/String.html

31 | P a g e

 Explanation:

 Create object JTextField named ‗txt_name‘. Use default constructor of JLabel

with empty parameter.

 Explanation:

 Create object JRadioButton named ‗radio_male‘ and‗radio_female‘.

JRadioButton has constructor JRadioButton(String text).So we can directly

create object JRadioButton with text. JRadioButton always combined with

ButtonGroup because ButtonGroup can create a group of buttons in which only

one button at a time can be selected.

 Explanation:

 Create object ButtonGroup named ‗btn_group‘. ButtonGroup only has one default

constructor ButtonGroup().

 Explanation:

 Create all objects JCheckBox like picture. JCheckBox has constructor

JCheckBox(String text). So we can directly create object JCheckBox with text.

mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/javax/swing/JRadioButton.html#JRadioButton(java.lang.String)
mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/java/lang/String.html
mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/javax/swing/ButtonGroup.html#ButtonGroup()
mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/javax/swing/JCheckBox.html#JCheckBox(java.lang.String)
mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/java/lang/String.html

32 | P a g e

 Explanation:

 Create object JComboBox named ‗cmb_country. Use default constructor of

JComboBox with empty parameter.

 Explanation:

 Create object JTextArea named ‗txt_address‘. Use default constructor of

JTextArea with empty parameter.

 Explanation:

 Create object JScrollPane named ‗spane‘. Use default constructor of JScrollPane

with empty parameter. JScrollPane is always combined with JTextArea to create

scroll bar in JTextArea automatically.

3. Create object Component Container direction ―South‖ (panel_south)

 Explanation:

 Create object JButton named ‗btn_submit‘ and‗btn_reset‘. JButton has constructor

JButton(String text).So we can directly create object JButton with text.

f. Task 06 – Add Item into JComboBox

mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/javax/swing/JRadioButton.html#JRadioButton(java.lang.String)
mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/java/lang/String.html

33 | P a g e

Explanation:

Method addItem(Object anObject) is a method JcomboBox that used to add item to

the item list. In example, add ―Indonesian‖, ―Japan‖, ―USA‖, ―China‖, and ―Other‖

into item list of ‗cmb_country‘.

g. Task 07 – Add Component into each JPanel

1. Add all components that located in the North of Container into ‗panel_north‘

Explanation:

First, add object ‗lbl_title‘ into ‗panel_north‘ with direction ―North‖. Second, add

object ‗lbl_icon‘ into ‗panel_north‘ with direction ―Center‖. We add direction in

second parameter because ‗panel_north‘ use BorderLayout.

2. Add all components that located in the Center of Container into ‗panel_center‘

mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/java/lang/Object.html

34 | P a g e

Explanation:

Because ‗panel_center‘ use GridLayout, therefore when we add each component

into ‗panel_center‘, we must add each component one by one according the order.

Explanation:

According to the order of components, add object lbl_name and txt_name into

‗panel_center‘.

Explanation:

First, add radio_male and radio female into btn_group. Then, add radio_male and

radio_female into panel_radio. Object btn_group in this section just created a

group of buttons. Object panel_radio in this section is to create a button panel.

Explanation:

According to the order of components, add object lbl_gender and panel_radio into

panel_center

35 | P a g e

Explanation:

Same as JRadioButton, add all JCheckBox into panel_check to create a button

panel.

Explanation:

According to the order of components, add object lbl_hobby and panel_check into

panel_center

Explanation:

According to the order of components, add object lbl_country and cmb_country

into panel_center

Explanation:

MethodsetLineWrap(boolean wrap)is a method of JTextArea to set the line-

wrapping policy of the text area. If set to true the lines will be wrapped if they are

too long to fit within the allocated width. If set to false, the lines will always be

unwrapped.

Method setViewPortView will be explained later in chapter 4. We must combine

JTextArea with JScrollPane to make correct Text Area.

mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/javax/swing/JTextArea.html#setLineWrap(boolean)

36 | P a g e

Explanation:

According to the order of components, add object lbl_address and spane into

panel_center

3. Add all components that located in the South of Container into ‗panel_south‘

Explanation:

Add object btn_submit and btn_reset into panel_south

h. Task 08 – Add JPanel into Container and give direction

Explanation:

This section is the final step. We will add each panel into Container based on border

layout, so we need submit direction too when we add component into Container. At

first, we add object ‗panel_north‘ into North Direction. Second, add ‗panel_center‘

into Center Direction, and last add ‗panel_south‘ into South Direction.

37 | P a g e

Chapter 04

GUI Intermediate Component

38 | P a g e

4.1. JMenuBar

An implementation of a menu bar. You add JMenu objects to the menu bar to construct a

menu. When the user selects a JMenu object, its associated JPopupMenu is displayed,

allowing the user to select one of the JMenuItems on it.

4.2. JMenu

An implementation of a menu containing JMenuItems that is displayed when the user

selects an item on the JMenuBar. In addition to JMenuItems, a JMenu can also contain

JSeparators.

4.3. JMenuItem

An implementation of an item in a menu. A menu item is essentially a button sitting in a

list. When the user selects the "button", the action associated with the menu item is

performed. A JMenuItem contained in a JPopupMenu performs exactly that function.

4.4. JSeparator

JSeparator provides a general purpose component for implementing divider lines - most

commonly used as a divider between menu items that breaks them up into logical

groupings.

4.5. JScrollPane

Provides a scrollable view of a lightweight component. A JScrollPane manages a

viewport, optional vertical and horizontal scroll bars, and optional row and column

heading viewports.

4.6. JProgressBar

A component that visually displays the progress of some task. As the task progresses

towards completion, the progress bar displays the task's percentage of completion. This

percentage is typically represented visually by a rectangle which starts out empty and

gradually becomes filled in as the task progresses. In addition, the progress bar can

display a textual representation of this percentage.

39 | P a g e

4.7. Exercise

Create Form With Menu, Progress Bar and Text Area

Note:

JProgressBar in thepicture using Thread to show the workflow JProgressBar

a. Task 01 - Create Project JAVA in Netbeans

1. Run Netbeans from Start Menu

3. Open Menu File -> New Project or Click icon on bottom menu Edit

4. On Project Window, choose Java on Categories and Java Application on Projects

5. Next Setting Project name, Project Location and don‘t forget check ―Create Main

Class‖ like picture below

40 | P a g e

6. Then Press Finish

7. Finally your project has been created like picture below, double click on file

Main.java if you want to modify code

b. Task 02 - Create JFrame and Set Properties JFrame

1. Create object JFrame

 Explanation:

 Same as Chapter 1

41 | P a g e

2. Setting properties JFrame

Explanation:

Same as Chapter 1

c. Task 03 – Using Container Class

1. Create object Container

 Explanation:

 Same as Chapter 1

2. Set layout of Container to BorderLayout

Explanation:

 Sets the layout manager of Container into Border Layout

d. Task 04 - Create JPanel

1. Create object JPanel and set Layout

Explanation:

 Create object JPanel named ‗panel_center‘ that will be located on Center

Direction of Container. Use default Layout JPanel (FlowLayout). Only object

JTextArea and JscrollPane will be added into this panel.

42 | P a g e

Explanation:

 Create object JPanel named ‗panel_south‘ that will be located on South Direction

of Container. Use default Layout JPanel (FlowLayout). Only object JProgressBar

will be added into this panel.

e. Task 05 - Create Component

1. Create object Component Container direction ―Center‖

 Explanation:

 Create object JTextArea named ‗txt_area‘ and using default constructor to create

Text Area with empty text.

 Explanation:

 Create object JScrollPane named ‗spane‘ and using default Constructor to create

an empty (no viewport view) JScrollPane where both horizontal and vertical

scrollbars appear when needed.

2. Create object Component Container direction ―South‖

 Explanation:

 Just declare an object of Class Thread named ‗Th‘.

43 | P a g e

 Explanation:

 Create object JProgressBar named ‗pbar‘ and using default Constructor to create a

horizontal progress bar that displays a border but no progress string. The initial

and minimum values are 0, and the maximum is 100.

3. Create object Component Menu on the top of JFrame

 Explanation:

 Create object JProgressBar named ‗menu_bar‘ and using default Constructor to

create a new menu bar. Firstly, we must create JMenuBar before create JMenu

and JMenuItem.

 Explanation:

 Create object JMenu named ‗menu_file‘ and ‗menu_edit‘. Use constructor

JMenu(String text) to construct a new JMenu with the supplied string as its text.

mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/java/lang/String.html

44 | P a g e

 Explanation:

 Create all objects JMenu named and using constructor JMenuItem(String text) to

create a JMenuItem with the specified text. All of them will be located in

menu_file.

 Explanation:

 Create all objects JMenu named and using constructor JMenuItem(String text) to

create a JMenuItem with the specified text. All of them will be located

inmenu_edit.

 Explanation:

 Create object JSeparator named ‗separator‘ (for new horizontal separator).

f. Task 06 – Create Menu in JFrame

mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/java/lang/String.html
mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/java/lang/String.html

45 | P a g e

Explanation:

Method add(Action a) is a method JMenu that used to creates a new menu item

attached to the specified Action object and appends it to the end of this menu. Fill

parameter with object JMenuItem that have created before. When insert JMenuItem,

you should pay attention to the order of menu item.

Explanation:

Method add(Action a) is a method JMenu that used to creates a new menu item

attached to the specified Action object and appends it to the end of this menu. Fill

parameter with object JMenuItem that have created before. When insert JMenuItem,

you should pay attention to the order of menu item.

Explanation:

Method add(JMenu c) is a method JMenuFrame that used to appends the specified

menu to the end of the menu bar. Fill parameter JMenu with object JMenu that have

created before named menu_file and menu_edit.

Explanation :

mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/javax/swing/JMenu.html#add(javax.swing.Action)
mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/javax/swing/Action.html
mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/javax/swing/JMenu.html#add(javax.swing.Action)
mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/javax/swing/Action.html
mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/javax/swing/JMenuBar.html#add(javax.swing.JMenu)
mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/javax/swing/JMenu.html

46 | P a g e

Method setJMenuBar(JMenuBar menubar)is a method JFrame that used to add

JMenuBar into top of JFrame. Fill parameter menubar with object JMenuBar that

have created before named menu_bar.

g. Task 07 – Setting Properties JTextArea and Making Animation Progress

JProgressBar

1. Seting properties JTextArea

 Explanation:

 Method setColumns(int columns)is a method JTextArea that used to set the

number of columns for this TextArea. Fill parameter with number to set

maximum width of column per row.

Explanation:

Method setRows(int rows)is a method JTextArea that used to set the number of

rows for this TextArea. Fill parameter with number to adjust the row that will be

displayed in the text area.

Explanation:

Method setLineWrap(boolean wrap)is a method JTextArea that used to set the

line-wrapping policy of the text area. If set to true the lines will be wrapped if

they are too long to fit within the allocated width. If set to false, the lines will

always be unwrapped.

mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/javax/swing/JFrame.html#setJMenuBar(javax.swing.JMenuBar)
mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/javax/swing/JMenuBar.html
mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/javax/swing/JTextArea.html#setColumns(int)
mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/javax/swing/JTextArea.html#setRows(int)
mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/javax/swing/JTextArea.html#setLineWrap(boolean)

47 | P a g e

Explanation:

Method setViewportView(Component view)is a method JScrollPane that used to

creates a viewport if necessary and then sets its view. This setting properties will

make object txt_area has scrollbar if the row of text area is not enough.

2. Making animation progress JProgressBar

Explanation:

1. Method getValue() is a method JProgressBar that returns the progress bar's

current value.

mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/javax/swing/JScrollPane.html#setViewportView(java.awt.Component)
mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/java/awt/Component.html
mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/javax/swing/JProgressBar.html#getValue()

48 | P a g e

2. Method getMaximum() is a method JProgressBar that returns the progress

bar's maximum value (100)

3. Do selection with condition if Progress Bar‘s current value smaller or same as

Progress Bar‘s maximum value then doing statement.

4. Method setString(String s)is a method JProgressBar that used to sets the

value of the progress string. Fill parameter like sample to get Progress Bar‘s

current value and show the value.

5. Method setValue(int n) is a method JProgressBar that used to sets the

progress bar's current value to n. This method forwards the new value to the

model. Fill parameter like sample to do increment value one by one until

reach the Progress Bar‘s maximum value.

Explanation:

Method sleep(long millis)is a method Thread that causes the currently executing

thread to sleep (temporarily cease execution) for the specified number of

milliseconds, subject to the precision and accuracy of system timers and schedulers.

In short term, it delays the program execution by 10 milliseconds.

Explanation:

Method start() is a method Thread that causes this thread to begin execution. Don‘t

forget to start the thread when you used it.

mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/javax/swing/JProgressBar.html#getMaximum()
mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/javax/swing/JProgressBar.html#setString(java.lang.String)
mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/java/lang/String.html
mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/javax/swing/JProgressBar.html#setValue(int)
mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/java/lang/Thread.html#sleep(long)
mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/java/lang/Thread.html#start()

49 | P a g e

Explanation:

Method setStringPainted(boolean b) is a method JProgressBar that used to sets the

value of the stringPainted property, which determines whether the progress bar should

render a progress string.

h. Task 08 – Add Component into each JPanel

1. Add all components that located in the Center of Container into ‘panel_center’

 Explanation:

 Add object ‘spane’ into ‘panel_center’. Object txt_area is include in the object

spane.

2. Add all components that located in the South of Container into ‘panel_south’

Explanation:

Add object ‘pbar’ into ‘panel_south’.

i. Task 09– Add JPanel into Container and give direction

Explanation:

This section is final step. We will add each panel into Container based on border

layout, so we need submit direction too when we add component into Container.

Add object ‘panel_center’ into Center Direction. Then add ‘panel_south’ into

South Direction.

mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/javax/swing/JProgressBar.html#setStringPainted(boolean)

50 | P a g e

Chapter 05

GUI Advanced Component

51 | P a g e

5.1 JList

Described as a component that displays a list of objects and allows the user to select one

or more items.

5.2 JTable

The JTable is used to display and edit regular two-dimensional tables of cells.

5.3 Exercise

Create Form with JList and JTable

a. Task 01 - Create Project JAVA in Netbeans

1. Run Netbeans from Start Menu

2. Open Menu File -> New Project or Click icon on bottom menu Edit

3. On Project Window, choose Java on Categories and Java Application on Projects

4. Next Setting Project name, Project Location and don‘t forget check ―Create Main

Class‖ like picture below

52 | P a g e

5. Then Press Finish

6. Finally your project has been created like picture below, double click on file

Main.java if you want to modify code

b. Task 02 - Create JFrame and Set Properties JFrame

1. Create object JFrame

 Explanation:

 Same as Chapter 1

53 | P a g e

2. Setting properties JFrame

 Explanation:

 Same as Chapter 1

c. Task 03 – Using Container Class

1. Create object Container

Explanation:

 Same as Chapter 1

2. Set layout of Container to BorderLayout

Explanation:

Sets the layout manager of Container into Border Layout

d. Task 04 - Create JPanel

1. Create object JPanel and set Layout

 Explanation:

 Create object JPanel named ‗panel_center‘ that will be located on Center

Direction of Container. Use default Layout JPanel (FlowLayout). Only object

JList will be added into this panel.

54 | P a g e

 Explanation:

 Create object JPanel named ‗panel_south‘ that will be located on South Direction

of Container. Use default Layout JPanel (FlowLayout). Only object JTable will be

added into this panel.

e. Task 05 - Create Component

1. Create object Component Container direction ―Center‖

 Explanation:

 Create object JList named ‗list‘ and using default Constructor to constructs a JList

with an empty, read-only, model.

 Explanation:

 Create object JScrollPane named ‗spanelist‘ and using default Constructor to

creates an empty (no viewport view) JScrollPane where both horizontal and

vertical scrollbars appear when needed.

2. Create object Component Container direction ―South‖

55 | P a g e

Explanation:

 Create object JTable named ‗tabel‘ and using default Constructor to constructs a

default JTable that is initialized with a default data model, a default column

model, and a default selection model.

 Explanation:

 Create object JScrollPane named ‗spanetabel‘ and using default Constructor to

creates an empty (no viewport view) JScrollPane where both horizontal and

vertical scrollbars appear when needed.

f. Task 06 – How to insert data into Jlist

1. Initialization data

Explanation:

Declaration of all data into Array String

2. Create object Vector

Explanation:

Create object Vector (String data type) named ‗vec_name‘ and using default

Constructor to constructs an empty vector.

56 | P a g e

3. Insert data into Vector

Explanation:

Method add(E e) is a method Vector<E> that used to Appends the specified

element to the end of this Vector. Do looping array object ‗name‘ from first index

(0) until last index (name.length) to add all data from array object ‗name‘ into

Vector object ‗vec_name‘

4. Set list data with Vector

Explanation:

Method setListData(Vector<?> listData) is a method JList that used to constructs

a read-only ListModel from a Vector then show data from Vector to JList. Fill

parameter with object Vector named ‗vec_name‘.

5. Set size for JScrollPane

Explanation:

Method setPreferredSize(Dimension preferredSize) is a inherited method from

class javax.swing.JComponent that used to sets the preferred size of this

component.

6. Set view for JScrollPane

mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/java/util/Vector.html#add(E)
mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/java/util/Vector.html
mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/javax/swing/JList.html#setListData(java.util.Vector)
mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/java/util/Vector.html
mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/java/awt/Dimension.html
mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/javax/swing/JComponent.html

57 | P a g e

Explanation:

Method setViewportView(Component view)is a method JScrollPane that used to

creates a viewport if necessary and then sets its view. This setting property will

make object ‗list‘ has scrollbar if the row of text area is not enough.

g. Task 07 - How to insert data into JTable

1. Initialization data

 Explanation:

 Declaration of all data into One Dimension Array String

2. Create some objects Vector for table

Explanation:

Create object Vector (String data type) named ‗vec_header‘ and using default

Constructor to constructs an empty vector. It will be used as parameter when

creating DefaultTableModel and it will be as a container of header table.

mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/javax/swing/JScrollPane.html#setViewportView(java.awt.Component)
mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/java/awt/Component.html

58 | P a g e

Explanation:

Create object Vector (Vector data type) named ‗vec_data‘ and using default

Constructor to constructs an empty vector. It will be used as parameter when

creating DefaultTableModel and it will be as a container of data table.

Different Vector<String> and Vector<Vector> will be explained picture below

Explanation:

Just declare an object of Class Vector type String name ‗vec_detail‘

59 | P a g e

Explanation:

Create object DefaultTableModel named ‗dtm‘ and using Constructor

DefaultTableModel(Vector data, Vector columnNames)to Constructs a

DefaultTableModel and initializes the table by passing data and columnNames to

the setDataVector method. Or the other word is creates content of JTable using

DefaultTableModel.

Fill parameter Vector data (Content Table) with object ‗vec_data‘ and Vector

columnNames (Header Table) with object ‗vec_header‘

Explanation:

Method isCellEditable(int row, int column) is a method from DefaultTableModel

that used to sets cell of table whether or not to edit.

mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/javax/swing/table/DefaultTableModel.html#DefaultTableModel(java.util.Vector, java.util.Vector)
mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/java/util/Vector.html
mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/java/util/Vector.html
mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/javax/swing/table/DefaultTableModel.html#isCellEditable(int, int)

60 | P a g e

3. Make table with data

Explanation:

Add objects into ‗vec_header‘ as the header of table

Explanation:

Do looping from first index (0) until last index (name.length) to add data from

object array into each of vector detail.

61 | P a g e

Constructs an empty vector

Add data from each array into vector detail

Add object ‗vec_detail‘ (One dimension Vector) into ‗vec_data‘ (Two Dimension

Vector)

Explanation:

Method setModel(TableModel dataModel)is a method from JTable that used to

sets the data model for this table to newModel and registers with it for listener

notifications from the new data model. Fill parameter with Object

DefaultTableModel named ‗dtm‘

Explanation:

Method setPreferredSize(Dimension preferredSize) is an inherited method from

class javax.swing.JComponent that used to sets the preferred size of this

component.

mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/javax/swing/JTable.html#setModel(javax.swing.table.TableModel)
mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/javax/swing/table/TableModel.html
mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/java/awt/Dimension.html
mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/javax/swing/JComponent.html

62 | P a g e

Explanation:

Method setViewportView(Component view)is a method JScrollPane that used to

creates a viewport if necessary and then sets its view. This setting properties will

make object ‗tabel‘ has scrollbar if the row of table is not enough.

h. Task 08 – Add Component into each JPanel

1. Add all components that located in the Center of Container into ‗panel_center‘

 Explanation:

 Add object ‗spanelist‘ into ‗panel_center‘. Object ‗list‘ is include in the object

‗spaneList‘.

2. Add all component that located in the South of Container into ‗panel_south‘

Explanation:

Add object ‗spanetabel‘ into ‗panel_south‘. Object ‗tabel‘ is include in the object

‗spaneTabel‘.

i. Task 09 – Add JPanel into Container and give direction

Explanation:

This section is final step. We will add each panel into Container based on border

layout, so we need submit direction too when we add component into Container. Add

object ‗panel_center‘ into Center Direction. Second then add ‗panel_south‘ into South

Direction.

mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/javax/swing/JScrollPane.html#setViewportView(java.awt.Component)
mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/java/awt/Component.html

63 | P a g e

Chapter 06

Event Driven Programming

64 | P a g e

6.1 Event Handling

EventHandling is a method to handle an event/action given user to a GUI component.

Event can be defined as a signal to the program that something has happened. Event can

be triggered by a user on a component, such as the button is pressed. Two packages are

commonly used to handle events are java.swing.event and java.awt.event. Eventhandling

can be divided into 3groups: EventSource, EventListener, and EventHandler.

1. Event Source

EventSource is a component that getting the event which is then captured by the

EventListener. EventSource can be distinguished by name of the component itself,

such as the Save button, delete button, and others. By naming this Event Source, an

Event Listener will be able to detect the source which it originates.

2. Event Listener

EventListener is used to capture events that occur in components.

3. Event Handler

 EventHandler is a method contains blocks of program that determines the next

process after the componentget an event. For example, when Save button is pressed,

the Event Listener will catch the event from the Source, then the Event Handler will

store the data.

6.2 Action Listener

The listener interface for receiving action events. The class that might be processing an

action event implements this interface, and the object created within that class is

registered with an addActionListener method. When the action event occurs, that

object's actionPerformed method is invoked.

6.3 Key Listener

The listener interface for receiving keyboard events (keystrokes). The class that is

interested in processing a keyboard event either implements this interface (and all the

65 | P a g e

methods it contains) or extends the abstract KeyAdapter class (overriding only the

methods that will be used).

The listener object created from that class is then registered with a component using the

component's addKeyListener method. A keyboard event is generated when a key is

pressed, released, or typed. The relevant method in the listener object is then invoked,

and the KeyEvent is passed to it.

6.4 Mouse Listener

The listener interface for receiving mouse events (press, release, click, enter, and exit) on

a component.

66 | P a g e

6.5 Window Listener

The listener interface for receiving window events.

6.6 Item Listener

The listener interface for receiving item events.

6.7 JOptionPane

JOptionPane makes it easy to pop up a standard dialog box that prompts users for a value

or informs them of something.

While the JOptionPane class may appear complex because of the large number of

methods, almost all uses of this class are one-line calls to one of the static methods shown

below:

67 | P a g e

6.8 Exercise

Create Form Register

a. Task 01 - Create Project JAVA in Netbeans

1. Run Netbeans from Start Menu

2. Open Menu File -> New Project or Click icon on bottom menu Edit

3. On Project Window, choose Java on Categories and Java Application on Projects

4. Next Setting Project name,Project Location and don‘t forget check ―Create Main

Class‖ like picture below

68 | P a g e

5. Then Press Finish

6. Finally your project has been created like picture below, double click on file

Main.java if you want to modify code

b. Task 02 - Create JFrame and Set Properties JFrame

1. Create object JFrame

2. Setting properties JFrame

69 | P a g e

c. Task 03 – Using Container Class

1. Create object Container

2. Set layout of Container to BorderLayout

 Explanation:

Sets the layout manager of Container into Border Layout

d. Task 04 - Create JPanel

1. Create object JPanel and set Layout

 Explanation:

 Make object JPanel named ‗panel_north‘ that will be located on North Direction

of Container. Directly set layout into Border Layout when created object. Only

object JLabel (Title) and JLabel (Icon) will be added into ‗panel_north‘.

 Explanation:

 Create object JPanel named ‗panel_center‘ that will be located on Center

Direction of Container. Directly set layout into Grid Layout with 4 rows and 2

cols when created object.

 Explanation:

70 | P a g e

 Create object JPanel named ‗panel_south‘ that will be located on South Direction

of Container. Directly set layout into Flow layout when created object. Only two

JButton will be added into this panel.

 Explanation:

 Create object JPanel named ‗panel_radio‘ that will be located on right side of

Gender. Still make default Layout of JPanel (Flow Layout) when created object.

Only two JRadioButton will be added into this panel.

 Explanation:

 Create object JPanel named ‗panel_check‘ that will be located on right side of

Hobby. Directly set layout into Grid Layout with 2 rows and 2 cols when created

object. Four JCheckBox will be added into this panel.

e. Task 05 - Create Component

1. Create object Component Container direction ―North‖

 Explanation:

 Create object JLabel named ‗lbl_title‘. JLabel has constructor JLabel(String text,

int horizontalAlignment). So we can directly make object JLabel with text and set

position horizontal of JLabel. About position horizontal of JLabel, there are

several parameter that can be used.

mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/javax/swing/JLabel.html#JLabel(java.lang.String, int)
mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/java/lang/String.html

71 | P a g e

 JLabel.BOTTOM_ALIGNMENT

 Ease-of-use constant for getAlignmentY(). It specifies an alignment to the

bottom of the component

 JLabel.CENTER_ALIGNMENT

 Ease-of-use constant for getAlignmentY() and getAlignmentX(). It

specifies an alignment to the center of the component

 JLabel.LEFT_ALIGNMENT

 Ease-of-use constant for getAlignmentX(). It specifies an alignment to the

left side of the component.

 JLabel.RIGHT_ALIGNMENT

 Ease-of-use constant for getAlignmentX(). It specifies an alignment to the

right side of the component.

 JLabel.TOP_ALIGNMENT

 Ease-of-use constant for getAlignmentY(). It specifies an alignment to the

top of the component.

Explanation:

Create object ImageIcon named ‗icon‘. You can import directly file that have

picture format such as .jpg, .bmp, .png, .gif and etc with explain the location of

file in parameter. This section will be explained step by step about directory file.

 First, you have project folder that named by ―Soal03‖ like picture below

 Second, Double click the folder and you will get the location like picture.

This is ―default first directory‖ if you want to import the file.

mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/java/awt/Component.html#BOTTOM_ALIGNMENT
mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/java/awt/Component.html#CENTER_ALIGNMENT
mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/java/awt/Component.html#LEFT_ALIGNMENT
mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/java/awt/Component.html#RIGHT_ALIGNMENT
mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/java/awt/Component.html#TOP_ALIGNMENT

72 | P a g e

 Third, in case, picture file named ―registration.png‖ has been located in

folder ―src‖. So it must be informed the location of file is

―scr/registration.png‖. Don‘t give space or make capital letter when name

of file is not capital letter because it‘s case sensitive.

Explanation :

Create object JLabel named ‗lbl_icon‘. JLabel has constructor JLabel(Icon image,

int horizontalAlignment).So we can directly make object JLabel with icon and set

position horizontal of JLabel. Fill paramenterIcon image with object ImageIcon

named icon.

2. Create object Component Container direction ―Center‖ (panel_center)

mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/javax/swing/JLabel.html#JLabel(javax.swing.Icon, int)
mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/javax/swing/Icon.html

73 | P a g e

 Explanation:

 Create all objects JLabel like picture. JLabel has constructor JLabel(String text).

So we can directly make object JLabel with text.

 Explanation:

 Create object JTextField named ‗txt_name‘ and ‗txt_age‘. Use default constructor

of JLabel with empty parameter.

 Explanation:

 Create object JRadioButton named ‗radio_male‘ and‗radio_female‘.

JRadioButton has constructor JRadioButton(String text). So we can directly

make object JRadioButton with text. JRadioButton always combined with

ButtonGroup because ButtonGroup can create a group of buttons in which only

one button at a time can be selected.

 Explanation:

 Create object ButtonGroup named ‗btn_group‘. ButtonGroup only has one default

constructor ButtonGroup().

mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/javax/swing/JLabel.html#JLabel(java.lang.String)
mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/java/lang/String.html
mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/javax/swing/JRadioButton.html#JRadioButton(java.lang.String)
mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/java/lang/String.html
mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/javax/swing/ButtonGroup.html#ButtonGroup()

74 | P a g e

 Explanation:

 Create all objects JCheckBox like picture. JCheckBox has constructor

JCheckBox(String text). So we can directly create object JCheckBox with text.

3. Create object Component Container direction ―South‖ (panel_south)

 Explanation:

 Create object JButton named ‗btn_submit‘ and‗btn_reset‘. JButton has constructor

JButton(String text).So we can directly create object JButton with text.

f. Task 06 – Add Component into each JPanel

1. Add all components that located in the North of Container into ‗panel_north‘

 Explanation:

 First add object ‗lbl_title‘ into ‗panel_north‘ with direction ―North‖. Second, add

object ‗lbl_icon‘ into ‗panel_north‘ with direction ―Center‖. We add direction in

second parameter because ‗panel_north‘ use BorderLayout.

mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/javax/swing/JCheckBox.html#JCheckBox(java.lang.String)
mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/java/lang/String.html
mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/javax/swing/JRadioButton.html#JRadioButton(java.lang.String)
mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/java/lang/String.html

75 | P a g e

2. Add all components that located in the Center of Container into ‗panel_center‘

Explanation:

Because ‗panel_center‘ use GridLayout, therefore when we add each component

into ‗panel_center‘, we must add each component one by one according the order.

Explanation:

According the order, add object lbl_name and txt_name into panel_center

Explanation:

According the order, add object lbl_age and txt_age into panel_center

76 | P a g e

Explanation:

Add object radio_male and radio female into btn_group first, then add radio_male

and radio_female into panel_radio. Object btn_group in this section just created a

group of buttons. Object panel_radio in this section is to create a button panel.

Explanation:

According the order, add object lbl_gender and panel_radio into panel_center

Explanation:

Same as JRadioButton, add all JCheckBox into panel_check to make a button

panel.

Explanation:

According the order, add object lbl_hobby and panel_check into panel_center

3. Add all component that located in the South of Container into ‗panel_south‘

Explanation:

A object btn_submit and btn_reset into panel_south

77 | P a g e

g. Task 07 – Add JPanel into Container and give direction

Explanation:

This section is final step. We will add each panel into Container based on border

layout, so we need submit direction too when we add component into Container. At

first, we add object ‗panel_north‘ into North Direction. Second, add ‗panel_center‘

into Center Direction, and last add ‗panel_south‘ into South Direction.

h. Task 08 – Make event ActionListener & implemented it to JButton

1. Implements Interface ActionListener

2. Click yellow lamp on left side to implement all methods

3. Method from Interface ActionListener will be added automatically

78 | P a g e

4. Erase all statement in method actionPerformed

5. Add actionListener to object btn_submit and btn_reset

Explanation:

addActionListener(ActionListener l)

 This function will adds an ActionListener to the button.

6. Check validation on btn_submit

Explanation:

Object getSource()

 This function will return object on which the Event initially occurred.

mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/java/awt/event/ActionListener.html
mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/java/lang/Object.html

79 | P a g e

Explanation:

If the object txt_name don‘t have text, then print alert ―Fill name‖

Explanation:

If the object txt_age don‘t have text, then print alert ―Fill age‖

Explanation:

If the object radio_male and radio_female haven‘t been chosen, then print alert

―Choose gender‖

Explanation:

If the object chk_coding, chk_listen, chk_other and chk_watch haven‘t been

chosen, then print alert ―Choose hobby‖

80 | P a g e

Explanation:

Object getSource()

 This function will return object on which the Event initially occurred.

setText(String text)

 Defines the single line of text this component will display. If the value of text

is null or empty string, nothing is displayed.

clearSelection()

 Clears the selection such that none of the buttons in the ButtonGroup are

selected.

setSelected(boolean b)

 Selects or deselects the button.

i. Task 09 – Make event KeyListener & implemented it to JTextField

1. Implements Interface KeyListener

mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/java/lang/Object.html
mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/java/lang/String.html

81 | P a g e

2. Click yellow lamp on left side to implement all methods

3. Method from Interface KeyListener will be added automatically

4. Erase all statement in all method

5. Add KeyListener to object txt_name and txt_age

82 | P a g e

addKeyListener(KeyListener l)

 this function will adds an ActionListener to the button.

6. Create validation in object txt_name

Explanation:

If the input doesn‘t between ‗a-z‘ or ‗A-Z‘ or BACK_SPACE or SPACE, then

print JOptionPane ―Input must be letter‖

Object getSource()

 This function will return object on which the Event initially occurred.

Char getKeyChar()

 Returns the character associated with the key in this event.

setKeyChar(char keyChar)

Set the keyChar value to indicate a logical character.

j. Task 10 – Make event MouseListener & implemented it to JCheckBox

1. Implements Interface KeyListener

mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/java/awt/event/KeyListener.html
mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/java/lang/Object.html

83 | P a g e

2. Click yellow lamp on left side to implement all methods

3. Method from Interface MouseListener will be added automatically

4. Erase all statement in all method

84 | P a g e

5. Add MouseListener to all object JCheckBox

addMouseListener(MouseListener l)

 Adds the specified mouse listener to receive mouse events from this

component.

6. Create event when click mouse in JcheckBox

k. Task 11 – Make event WindowListener & implemented it to JFrame

1. Implements Interface WindowListener

2. Click yellow lamp on left side to implement all methods

mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/java/awt/event/MouseListener.html

85 | P a g e

3. Method from Interface WindowListener will be added automatically

4. Erase all statement in all method

5. Add WindowListener to object JFrame named frame

addWindowListener(WindowListener l)

 Adds the specified window listener to receive window events from this

window.

6. Make event when Windows JFrame has been closed

mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/java/awt/event/WindowListener.html

86 | P a g e

l. Task 10 – Make event ItemListener & implemented it to JRadioButton

1. Implements Interface ItemListener

2. Click yellow lamp on left side to implement all methods

3. Method from Interface ItemListener will be added automatically

4. Erase all statement in all method

5. Add ItemListener to object JRadioButton

addItemListener(ItemListener l)

 Adds an ItemListener to the checkbox.

mk:@MSITStore:E:\Software\JAVA\JDK%206%20Documentation.chm::/j2se6/api/java/awt/event/MouseListener.html

87 | P a g e

6. Make event when object radio_male and radio_female has been chosen or not

88 | P a g e

Chapter 07

Database Access

89 | P a g e

7.1 Introduction to Database

A database is a collection of information that is organized so that it can easily be

accessed, managed, and updated. In one view, databases can be classified according to

types of content: bibliographic, full-text, numeric, and images.

In computing, databases are sometimes classified according to their organizational

approach. The most prevalent approach is the relational database, a tabular database in

which data is defined so that it can be reorganized and accessed in a number of different

ways. A distributed database is one that can be dispersed or replicated among different

points in a network. An object-oriented programming database is one that is congruent

with the data defined in object classes and subclasses.

Computer databases typically contain aggregations of data records or files, such as sales

transactions, product catalogs and inventories, and customer profiles.

Here is the hierarchy of the database:

7.2 Introduction to JDBC

JDBC API is a Java API that can access any data tabulation, especially data stored in

Relational Database. JDBC helps us to create Java programs that broadly cover the

following three programming activities:

1. Connect to a data source, such as databases.

2. Send queries and update statements to the database. Doing the command query

(SELECT) and command updates (Insert, Update, and Delete) to the database.

3. Receive and process the results from the database response to a query that we make.

90 | P a g e

JDBC is divided into four essential components.

1. JDBC API

JDBC API provides access from Java programming language to relational database.

Using the JDBC API, applications can run SQLcommands, receiveresults, and make

the changes back to the data. JDBC API can also interact with multiple data sources

contained in a dispersed and diverse environment.

2. JDBC Driver Manager

JDBC Driver Manager class load all the drivers found in the system properly as well

as to select the most appropriate driver from opening a connection to a database.

Driver Manager has traditionally formed the backbone for the JDBC architecture.

3. JDBC Test Suite

JDBC driver test suite helps us determine whether the JDBC drivers will run the

programs that we make or not. This test is not fully comprehensive or complete, but

these tests provide important information about many features in the JDBC API.

4. JDBC-ODBC Bridge

JDBC-ODBC Bridgeis a database driver that utilizes the ODBC driver to connect the

database. Note worthy is that we have to load ODBC binary code into the client used

by the driver.

JDBC Architecture can be seen from his tier level modelling of the

Process foraccessing the database.

Two tier

91 | P a g e

Three tier

7.3 Database Connection in Java

Before performing the database operations, the first thing to do is create a connection to

the database. To create a connection to the database we need to create a new JDBC (Java

Database Connectivity) which can be connected to many sources of data derived from a

Java application.

JDBC helps us to create a java application which regulates some activities of

programming, among others:

1. Connect to data sources, such as Database

2. Sending query and update data in the Database

3. Provide the results of the database as an answer to the query.

The steps are:

1. Loads its driver class

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

2. Createa database connection by passing the URL connection (in this case database

we use is MicrosoftAccess)

Connection con = DriverManager.getConnection("jdbc:odbc:Driver={Microsoft

Access Driver (*.mdb)};DBQ="+databaseName+".mdb");

3. Createa statement that we want

Statement st = con.createStatement(TYPE_SCROLL_INSENSITIVE,

CONCUR_UPDATABLE) ;

92 | P a g e

or

Statement st = con.createStatement(1004,1008);

Statement is an interface that is used to accommodate queries and st is an object

created from thei nterface Statement. Then create Statement used to receive the

query results by the type which can be determined. Then we choose

TYPE_SCROLL_INSENSITIVE and CONCUR_UPDATABLE.

TYPE_SCROLL_INSENSITIVE mean that the result of query can b scrollable

and CONCUR_UPDATEABLE mean query results can be updated.

FieldSummary-java.sql.ResultSet

CLOSE_CURSORS_AT_COMMIT 2

The constant indicating that open

ResultSet object swith this hold

ability will be closed when the

current transaction is committed.

CONCUR_READ_ONLY 1007

The constant indicating the

concurrency mode for a ResultSet

object that may NOT be updated.

CONCUR_UPDATABLE 1008

The constant indicating the

concurrency mode for a ResultSet

object that may be updated.

FETCH_FORWARD 1000

The constant indicating that the

rows in a resultset will be

processed in a forward

direction;first-to-last.

FETCH_REVERSE 1001

The constant indicating that the

rows in a resultset will be

processed in a reverse direction;

last-to-first.

file:///C:\Program%20Files\Helps\J2SE\api\java\sql\ResultSet.html%23CLOSE_CURSORS_AT_COMMIT
file:///C:\Program%20Files\Helps\J2SE\api\java\sql\ResultSet.html%23CONCUR_READ_ONLY
file:///C:\Program%20Files\Helps\J2SE\api\java\sql\ResultSet.html%23CONCUR_UPDATABLE
file:///C:\Program%20Files\Helps\J2SE\api\java\sql\ResultSet.html%23FETCH_FORWARD
file:///C:\Program%20Files\Helps\J2SE\api\java\sql\ResultSet.html%23FETCH_REVERSE

93 | P a g e

FETCH_UNKNOWN 1002

The constant indicating that the

order in which rows in a resultset

will be processed is unknown.

HOLD_CURSORS_OVER_COMMIT 1

The constant indicating that open

ResultSet objects with this hold

ability will remain open when the

current transaction is committed.

TYPE_FORWARD_ONLY 1003

The constant indicating the type

for a ResultSet object whose

cursor may move only forward.

TYPE_SCROLL_INSENSITIVE 1004

The constant indicating the type

for a ResultSet object that is

scrollable but generally not

sensitive to changes to the data that

underlies the ResultSet

TYPE_SCROLL_SENSITIVE 1005

The constant indicating the type

for a ResultSet object that is

scrollable and generally sensitive

to changes to the data that

underlies the ResultSet.

4. Create ResultSet to accommodate the query results.

ResultSet rs = st.executeQuery("select*fromMasterBarang");

This code executes the given SQL statement, which may be an INSERT,

UPDATE, or DELETE statement or an SQL statement that returns nothing, such

as an SQLDDL statement.

5. Closetheconnection.

con.close();

file:///C:\Program%20Files\Helps\J2SE\api\java\sql\ResultSet.html%23FETCH_UNKNOWN
file:///C:\Program%20Files\Helps\J2SE\api\java\sql\ResultSet.html%23HOLD_CURSORS_OVER_COMMIT
file:///C:\Program%20Files\Helps\J2SE\api\java\sql\ResultSet.html%23TYPE_FORWARD_ONLY
file:///C:\Program%20Files\Helps\J2SE\api\java\sql\ResultSet.html%23TYPE_SCROLL_INSENSITIVE
file:///C:\Program%20Files\Helps\J2SE\api\java\sql\ResultSet.html%23TYPE_SCROLL_SENSITIVE

94 | P a g e

ResultSet

By default, the object will execute the statement and retrieve all the results query then

hold it on ResultSet objects. An object from ResultSet, has a cursor that points to the

currentline. Tables used:

ResultSet rs:

Record set has several methods to designate data

 rs.first() move the cursor to the first data. In the case above, the resultset will

appoint the data in row1(K001Pencil1000)

 rs.next() move the cursor to the next data. When the first staters will

point(K001Pencil1000), after the method rs.next() invoked, then the cursor will point

to then extrow(K002pen2000)

 rs.prev() move the cursor to the previous data. If the situation now is pointing to

the row(K002pen2000) then after method rs.prev() invoked, he would point to the

previous row(K001Pencil1000)

 rs.last() move the cursor to the latest data. In the case above, the cursor will point

the data in row6(K006Bag15000)

 rs.getString(intcolumnIndex) Retrieves the value of the designated column in the

current row as a String.Index starts from1.

Example:

If the current rs is the first line, then your code is:

String code = rs.getString(1);

So String code will contain the "K001"

95 | P a g e

If you write:

String name = rs.getString(2);

So the name will contain the string "Pencil", it applies to the rest.

7.4 SimpleSQLQuery

After we create the connection then let‘s make the simple SQL Query. Let‘s make the

select simple query.

SimpleSELECT

 SELECT[column_name]FROM[table_name]

 SELECT[column_name1],[column_name2],[…]FROM[table_name]

SELECT*FROM[table_name]

Example:

SELECT Username FROM MsUser // this query for see column Username from

table MsUser

SELECT Username, Password FROM MsUser

SELECT * FROM MsUser // this query for see all the column from a table

 SELECT Filters

In select filter, you can have rules in your queries. These rules are tested for each row

your query produces. If the rule is true, the row is displayed. If the rule is false, the row is

not displayed. The rule starts withWHERE.

 FORMAT:

SELECT [column_name] FROM [table_name] WHERE [condition]

 Example:

SELECT Username FROM MsUser WHERE Username like ‗%budi%‘

//this query can be used if we want to see the username that contain the word

budi.

SELECT Username FROM MsUser WHERE Username =‗ budi‘

//this query can be used if we want to see the username budi.

96 | P a g e

7.5 ViewData

In view data, we can only use simple select query. But how about if our manager want to

see a few table? Is it possible to use simple select query? Therefore we need merging

tables. So for example table A combined with table B, it will generate a new virtual table

contains the contents of table A and table B.

If the manager wants to see the contents of the table MsProduct Category and MsProduct

simultaneously, it is necessary to merge the table. So, this is the query examples:

SELECT ProductName, ProductPrice, ProductCategory FROM MsProduct mp,

MsProductCategory pc WHERE mp.ProductID = pc.ProductID.

Mp from MsProduct and pc from MsProductCategory is the alias name that is used to

combine tables. And ProductID is used as a bridge to combine the tables. So the process

of merging table cannot be do near bit rarily.There is a requirement to merge two tables.

7.6 Exercise

Exercise 01 – Make a Database with MicrosoftAccess

 Task 01 – Create Blank Database in Microsoft Office 2007

1. Run Microsoft Office 2008 from Start Menu

97 | P a g e

2. Choose Blank Database

3. Then on the right side, Enter database name ―database‖

4. Browse location of database in D:\

5. Then press Create

 Task 02 – Table declaration

1. Fill the header on the word ―AddNewField‖

2. Then specify the data type on menu Datasheet–DataType&Formatting–DataType.

You can choose many data type based on ColumnNames.

Example:

Column Names Data Type

Name Text

Dateof Birth Date/Time

Price Number

3. Then you can fill the content of the row column

4. After filling the contents of the column line, then save it with CTRL+S or click on

the save icon, then Enter the name of your table ―MsSiswa‖

98 | P a g e

5. This is the place where we can see table what has been made

 Task 03 – SQL SimpleQuery

1. Choose Menu select Create-QueryDesign. If there is a dialogbox "ShowTable",

then choose close. Then choose SQL menu.

2. Then you can perform a simple query in here

3. After you create this query then you can run you show the result of your query.

Choose Run on the menu

Exercise 02 – How to using ResultSet

a. Task 01 – Create Project Java in NetBeans

1. Run NetBeans from Start Menu

2. Open Menu File -> NewProject

3. On New Project Window, choose categories Java then choose Projects

JavaApplication

4. Then Press Next

99 | P a g e

5. Enter your project name ―Practice01‖

6. Browse Location of your projec tin D:\

7. Unchecklist the CreateMainClass

8. Then Press Finish

b. Task 02 – Create Make a JFrame in your project

1. On the left side, right click on your mouse then choose New–JFrameForm

2. Then fill your ClassName―Main‖

3. Then Press Finish

Uncheck this option

100 | P a g e

c. Task 03 – Create User Interface in JFrameForm

1. Drag component that is served in the palette window

101 | P a g e

2. Choose Textfield 3 pieces, Label 3 pieces, Button 4 pieces until like this image

3. On New Project Window, choose categories Java the choose Projects

JavaApplication

 Task 04 – Create Connection from Java to Access

1. Type import for SQLConnection

2. Create Connection Method

If an error occurs when creating a connection, just click the error, then the error

will be handled by try catch. Everything connected with the database should be

handled by the try catch.

 Task 05 – Create select query for the data can be selected

1. Create query select at the constuctor of JFrameForm

102 | P a g e

 Task 05 – Create the contents of the function button first

1. Double Click at button first

2. Fill content from function of the first button

rs.first() means that the cursor can point the first rows.

jTextField1.setText(rs.getString(1))

a. setText means, to set text from rs.getString(1).

b. rs.getString(1) it means the index column in your query. So, index in query is

started from 1.

The first row will be selected

103 | P a g e

 Task 06 – Create the contents of the function button previous

1. Double Click at button previous

2. Fill content from function of the prev button

Explanation:

The validation above is to prove whether this row is the first row. If not, then the

cursor can point the previous row.

i. rs.isFirst() will return the false value if the row is not the first row and will

return the true value if the row is the first row.

ii. rs.previous(); means that the cursor can point previous row.

After press PrevButton

While Cursor at the third row

104 | P a g e

 Task 07 – Create the contents of the function button next

1. Double Click at button next

2. Fill content from function of the next button

Explanation:

The validation above is to prove whether this row is the last row. If not, then the

cursor can point the next row.

i. rs.isLast(); will return the false value if the row is not the last row and will

return the true value if the row is the last row.

ii. rs.next(); means that the cursor can point next row.

The second row will be
selected

105 | P a g e

After press Next Button

 Task 08 – Create the contents of the function button last

1. Double Click at button last

2. Fill content from function of the next button

rs.last(); means that the cursor can point the last rows.

The second row will be selected

While Cursor at the first row

106 | P a g e

The first row will be selected

The last row will be selected

107 | P a g e

Chapter 08

Database Operation

108 | P a g e

8.1 Data Manipulation

Data manipulation is the way in which data can be manipulated and changed. This type of

operation is divided into several sections, among them:

a. Insert Data

Query insert is used to enter data into a table in a database in accordance with

LinkConnection.

1. Example query for insert data:

INSERT INTO (table_name) [(column_name)] VALUES (Data)

2. Example below to enter data NIM, StudentName, and Programs in Table

MsMahasiswa:

INSERT INTO MsMahasiswa VALUES (‗1400123456‘ ,‗Java‘,

‗ComputerScience‘)

 try{

 st.executeUpdate("INSERTINTOMsMahasiswaVALUES('1400123456','Java','Co

mputerScience'");

 }

 catch(Exceptione){

 e.printStackTrace();

 System.out.println("ErrorDetected");

 }

b. Delete Data

Query Delete is one of the Data Manipulation Language is used to delete existing

data in the database. In the case of here we will be using MsAccess as the

database and java as programming language.

Delete Query

To perform Delete Queries can be written as follows:

FORMAT:

DELETE FROM [table_name]

109 | P a g e

Example:

DELETE FROM MsUser

If we do the query as above, then the result, MsUser will be empty because we do

not give the condition of the query. So that it will immediately delete the contents

of table MsUser.

So if we only want to delete 1 line data only can we write:

FORMAT:

DELETE FROM [table_name] WHERE

[column_name]='value'

Example:

DELETE FROM MsUser WHERE Username='haha'

If we do the query above, then the result is a line that has the content 'haha' in the

Username column is deleted.

If' value' of numbers then we do not need to add sign'''.

Example:

DELETE FROM MsUser WHERE Age=10

DeleteinJava

try{

 st.executeUpdate("DeletefromMsUserwhereUsername='haha'");

}

catch(Exceptione){

 e.printStackTrace();

 System.out.println("ErrorDetected");

}

110 | P a g e

c. Update Data

To update data from existing table we use:

Format:

UPDATE [table_name] SET[column_name]=[value]

WHERE[condition]

Example:

UPDATE FROM MsUser Setname='bluejack' WHERE

Username LIKE'%haha%'

This query is mean, update from table MsUser, then set name―bluejack‖ where

thec ondition for the username contain ―haha‖.

try{

 st.executeUpdate("UPDATEFROMMsUserSetname='bluejack'WHEREUs

ernameLIKE'%haha%'");

}

catch(Exceptione){

 e.printStackTrace();

 System.out.println("ErrorDetected");

}

8.2 PreparedStatement

Sometimes it is more convenient to use a PreparedStatement object for sending

SQLstatements to the database. This special type of statement is derived from the more

general class, statement that you already know.

If you want to execute a Statement object many times, you better use PreparedStatement.

Usually it reduces execution time.

The main feature of a PreparedStatement object is that, unlike a Statement object, it is

given a SQL statement when it is created.The advantage to this is that in most cases, this

SQL statement is sent to the DBMS right away, where it is compiled.As a result, the

111 | P a g e

PreparedStatement object contains not just a SQL statement, but a SQL statement that has

been precompiled. This means that when the PreparedStatement is executed, the DBMS

can just run the PreparedStatement SQLstatement without having to compile it first.

Although PreparedStatement objects can be used for SQL statements with no parameters,

you probably use them most often for SQL statements that take parameters. The

advantage of using SQL statements that take parameters is that you can use the same

statement and supply it with different values each time you execute it. Examples of this

are in the following sections.

To create a PreparedStatement same as using a Statement, except that were place the

Statement with PreparedStatement like the example below

This is the example when we use Statement like usually

Statementst=con.createStatement(TYPE_SCROLL_INSENSITIVE,CONCUR_UPDAT

ABLE);

Then this is the example when we use PreparedStatement for Insert Query

PreparedStatementps = con.prepareStatement(―INSERTINTOMsUserVALUES(?,?)‖);

ps.setString(1,―ichigo‖); //1meansindexforthefirstsign?

ps.setString(2,―ganteng‖); //2meansindexforthesecondsign?

ps.executeUpdate(); //forexecutethequery

If using PreparedStatement, it is identical with a question mark(?), because the question

mark determines the order of the data to be entered into the database.

 ps.setString(intparameterIndex,Stringx); means to sets the designated parameter to the

given Java String value.

 ps.executeUpdate(); it‘s for executes the SQLstatement such an SQL Data Definition

Language(DDL) statement, like INSERT, UPDATE or DELETE

Update Query

PreparedStatementps =

con.prepareStatement(―UPDATEMsMahasiswaSETIPK=?WHERENIM=?‖);

ps.setString(1,―3.4‖);

112 | P a g e

ps.setString(2,―1200123456‖);

ps.executeUpdate();

Delete Query

PreparedStatementps =

con.prepareStatement(―DELETEFROMMsMahasiswaWHERENIM=?‖);

ps.setString(1,―1200123456‖);

ps.executeUpdate();

8.3 Exercise

Let‘s make a Simple Database Operation

a. Task 01 – Create Project Java in NetBeans

1. Run NetBeans from Start Menu

2. Open Menu File -> New Project

3. On New Project Window, choose categories Java the choose Projects Java

Application

4. Then Press Next

5. Enter your project name ―Practice01‖

6. Browse Location of your project in D:\

7. Unchecklist the Create Main Class

8. Then Press Finish

113 | P a g e

b. Task 02 – Create Make a Jframe in your project

1. On the left side, right click on your mouse then choose New–JFrameForm

2. Then fill your ClassName ―Main‖

3. Then Press Finish

Uncheck list this

114 | P a g e

c. Task 03 – Make User Interface in JFrameForm

1. Type the import for SQLConnection

115 | P a g e

d. Task 03 – Make a connection in Java

1. Type the import for SQLConnection

2. Create Connection Method

e. Task 04 – Create Method for fill the Table

- Vector<String> kolom = new Vector<String>(); This vector is use to

accommodate the name of the column.

116 | P a g e

- Vector <Vector> baris = new Vector <Vector>(); This vector is use to

accommodate the content of the table.

- Vector isi; This vector is use to hold temporary data that will be

transferred to the Vectorbaris.

- DefaultTableModel tm = new DefaultTableModel (Vector rows, Vector

column); This DefaultTableModel is an implementation of TableModel

that uses a Vector of Vectors to store the cell value objects.

- Rs = st.executeQuery(―SELECT * FROM MsMahasiswa‖); means we do

a simple query that will select its contents and will be accommodated into

the ResultSet rs.

- While(rs.next()){}This statement is performed a useful loop to include all

the data in to the Vector baris.

- Isi = new Vector(); We have to initialize (with keyword ‗new‘) the object

that we want to use.

- Isi.add(Objectdata); Appends the specified element to the end of this

Vector

- rs.getString(StringcolumnLabel); Retrieves the value of the designated

column in the current row of this ResultSet object as a String in the Java

programming language.

- Or you can use rs.getString (intcolumnIndex); Retrieves the value of the

designated column in the current row of this ResultSet object as a String in

the Java programming language.

- jTable1.setModel(tm); it sets the data model for this table to new Model

and registers with it for listener notifications from the new datamodel.

117 | P a g e

f. Task 05 – Create Event for Table if the row has been selected

1. Right click on the table, select the Event, Mouse, mouseClicked

118 | P a g e

2. Fill the content of the method jTable1 MouseClicked

o jTable1.getSelectedRow(); it‘s use to accommodate the selected row from

table.

o jTextfield1.setText(); it‘s use to set the value at the jTextfield

o jTable1.getValueAt(baris,0); it‘s use to get the value from the selected row

and data from column0.

o toString(); it‘s use to convert the object from get ValueAt (int row, int

column) to String.

g. Task 06 – Create Insert Query in Button Insert

1. Double click at Insert Button on your JFrameForm

2. Fill the method at Button Insert

h. Task 07 – Create Update Query in Button Update

1. Double click at Update Button on your JFrameForm

2. Fill the method at Update Button

119 | P a g e

i. Task 08 - Create Delete Query in Button Delete

1. Double click at Delete Button on your JFrameForm

2. Fill the method at Delete Button

120 | P a g e

Chapter 09

Java Applet

121 | P a g e

9.1 Introduction

Applet is java program that can be embedded into HTML pages. Java applets runs on

the java enables web browsers such as Mozilla and internet explorer. Applet is designed

to run remotely on the client browser, so there are some restrictions on it. Applet can't

access system resources on the local computer. Applets are used to make the website

more dynamic and entertaining.

Advantages of Applet:

 Applets are cross platform and can run on Windows, Mac OS and Linux platform

 Applets can work all the version of Java Plug-in

 Applets run in a sandbox. Having applets run in the sandbox means that they cannot

read/write local valuable resources (such as your files). So the user does not need to

trust the code, so it can work without security approval

 Applets are supported by most web browsers

 Applets are cached in most web browsers, so will be quick to load when returning to

a webpage

 Usercanalsohavefullaccesstothemachineifuserallows

Disadvantages of Java Applet:

 Java plug-in is required to run applet

 Java applet requires JVM, so first time will takes significant startup time

 If applet is not already cached in the machine, it will be downloaded from internet

and will take time

 It‘s difficult to design and build good user interface in applets compared to HTML

technoloy

1. Applet Class

An applet is a small program that is intended not to be run on its own, but rather to be

embedded inside another application. The Applet class must be the superclass of any

applet that is to be embedded in a Webpage or viewed by the JavaApplet Viewer. Any

class that uses the applet must reduce its class of java.applet.Applet. The Applet class

provides a standard interface between applets and their environment.

122 | P a g e

Java applets do not have a main function. When applet is started, create an instant

web browser applet by calling the constructor of the applet that contains no arguments or

parameters.

To control the applet, the browser uses the functions:

- Init

- Start

- Stop

- Destroy

Init function:

-Called when the applet is created.

-Derived class must override this function.

-Usually used for the initialization includes setting user interface components.

Start function:

-Called after init function or each time you visit a webpage.

-Running the functions to be run in an applet, such as animation.

-Derived class must override this function.

Stop function:

-Called when the user leaves a webpage containing the applet.

-Applet becomes inactive.

-Derived class must override this function.

Destroy function:

-Called when the user closes the browser containing the applet.

-All source and object of the object is deleted.

-Called after a stop run first.

-Derived class must override this function.

123 | P a g e

Framework derived class using the applet:

Applet class is not designed to work with Swing components.

To use the Swing components of the Applet (java.applet.Applet) you better use Japplet

(javax.swing.JApplet)

Default layout of the JApplet:BorderLayout.

Example Using Japplet

Must
override
derived
class

124 | P a g e

The above class cannot be executed simply because they do not have a function main.

Must create an HTML file using applet tag<applet> that references to the applet class.

The browser will automatically create a GUI component that handles frames, the

framesize also must be given and change the framevisibility (so it can be displayed).

9.2 Java Applet in Web

If you want to display java applet into a web browser, then we have to make HTML

script first. HTML tags used are <applet> tag. If you want to know about and want to

learn about HTML, you can read book about HTML.

Examples of when the applet is called by the Web.

After you make this HTML script, then you can run this HTML script on your web

browser such a MozzilaFirefox, GoogleChrome, etc.

o Code = ―Practice01.class‖ used to display our applet class, which is

‗Practice01.class‘.

o Width = 350it‘s for specifies the width of an applet

o Height = 200it‘s for specifies the height of an applet

125 | P a g e

9.3 Exercise

Exercise 01 – make a simple User Interface in Java Applet

 Task 01 - Create Project Java in NetBeans

1. Run NetBeans from Start Menu

2. Open Menu File -> New Project

3. On NewProject Window, choose categories Java the choose Projects

JavaApplication

4. Then Press Next

5. Enter your projectname ―Practice01‖

6. Browse Location of your project in D:\

7. Then Press Finish

126 | P a g e

 Task 02 – Create the Java Applet

o Font f = new Font (―Verdana‖, Font.BOLD, 20); means to create a new

Font from the specified name, style and point size.

o g.setFont(f); it‘s use to set this graphics context's font to the specified font.

o g.setColor(Color.RED); it‘s use to set this graphics context's current colour

to the specified colour.

o g.drawString(Stringname, int x, int y); it‘s use to draw the text given by

the specified string, using this graphics context's current font and colour.

o init(); this function init is used to validate whether the name is NULL or

not?

o If NULL, it will be filled by "Laura"

o If NOT NULL, it will be filled by the existing value in the HTML

o getParameter(Stringname); it‘s use to return the value of the named

parameter in the HTMLtag

127 | P a g e

 Task 03 – Create HTML Script

o <paramname=―name‖value=―poipoi‖> it‘s used to define parameters or

variables for an object or applet element.

o Name = ―name‖ it‘s used to defines the name for a parameter

o value = ―poipoi‖it‘s used to give the specifies the value of a parameter

128 | P a g e

Chapter 10

UML Tools

129 | P a g e

10.1 Theory

A UML tool or UML modelling tool is a software application that supports some or all

of the notation and semantics associated with the Unified Modelling Language(UML),

which is the industry standard general purpose modelling language for software

engineering.

UML tool is used broadly here to include application programs which are not exclusively

focused on UML, but which support some functions of the Unified Modelling Language,

either as an add-on, as a component or as a part of their overall functionality.

UML tools support the following kinds of functionality:

 Diagramming

Diagramming in this context means creating and editing UML diagrams; that is

diagrams that follow the graphical notation of the Unified Modelling Language.

The use of UML diagrams is to draw diagrams of–mostly–object-oriented software

that generally a greed upon by software developers. When developers draw diagrams

of object-oriented software, they usually follow the UML notation. On the other hand,

it is often debated whether those diagrams are needed at all, during what stages of the

software development process they should be used, and how (if at all) they should be

kept up to date. The primacy of software code often leads to the diagrams being

deprecated. But the diagrams help developers to maintain or develop the systems.

 Round-TripEngineering

Round-trip engineering refers to the ability of a UML tool to perform code generation

from models, and model generation from code(a.k.a.,reverse engineering), while keeping

both the model and the code semantically consistent with each other. Code generation

and reverse engineering are explained in more detail below.

 CodeGeneration

Code generation in this context means that the user creates UML diagrams, which have

some connoted model data, and the UML tool derives from the diagrams part or all of the

http://en.wikipedia.org/wiki/Application_software
http://en.wikipedia.org/wiki/Unified_Modeling_Language
http://en.wikipedia.org/wiki/General_purpose_modeling
http://en.wikipedia.org/wiki/Software_engineering
http://en.wikipedia.org/wiki/Software_engineering
http://en.wikipedia.org/wiki/Diagram
http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Round-trip_engineering
http://en.wikipedia.org/wiki/Code_generation

130 | P a g e

source code for the software system. In some tools the user can provide a skeleton of the

program source code, in the form of a source code template, where predefined tokens are

then replaced with program source code parts during the code generation process.

 ReverseEngineering

Reverse engineering in this context means, that the UML tool reads program source code

as input and derives model data and corresponding graphical UML diagrams from it(as

opposed to the somewhat broader meaning described in the article "Reverse

engineering").

Some of the challenges of reverse engineering are:

 The source code often has much more detailed in formation than one would want to

seein design diagrams. This problem is addressed by software architecture

reconstruction.

 Diagram data is normally not contained with the program source, such that the UML

tool, at least in the initial step, has to create some random layout of the graphical

symbols of the UML notation or use some automatic layout algorithm to place the

symbols in a way that the user can understand the diagram. For example, the symbols

should be placed at such locations on the drawing pane that they don't overlap.

Usually, the user of such a functionality of a UML tool has to manually edit those

automatically generated diagrams to attain some meaningfulness. It also often doesn't

make sense to draw diagrams of the whole program source, as that represents just too

much detail to be of interest at the level of the UML diagrams.

 There are language features of some programming languages, like class-or function

templates of the C++ programming language, which are notoriously hard to convert

automatically to UML diagrams in their full complexity.

 Model and Diagram Interchange

XML Metadata Interchange(XMI) is the format for UML model interchange. XMI does

nots upport UML Diagram Interchange, which allows you to import UML diagrams from

one model to another.

http://en.wikipedia.org/wiki/Source_code
http://en.wikipedia.org/wiki/Template
http://en.wikipedia.org/wiki/Reverse_engineering
http://en.wikipedia.org/wiki/Reverse_engineering
http://www.sei.cmu.edu/architecture/research/reconstruction/
http://www.sei.cmu.edu/architecture/research/reconstruction/
http://en.wikipedia.org/wiki/Layout_algorithm
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/XML_Metadata_Interchange
http://en.wikipedia.org/w/index.php?title=UML_Diagram_Interchange&action=edit&redlink=1

131 | P a g e

 Model Transformation

A key concept associated with the Model-driven architecture initiative is the capacity to

transform a model into another model. For example, one might want to transform a

platform-independent domain model into a Java platform-specific model for

implementation. It is also possible to refactor UML models to produce more concise and

well-formed UML models. Finally, it is possible to generate UML models from other

modelling notations, such as BPMN. The standard that supports this is called

QVT(Queries/Views/Transformations). One example of an open-source QVT-solution is

the ATL language built by INRIA.

UML Tools commonly used are as follows:

1. Class Diagram

Notation Class Diagram

10.2 Class Definition

A class describes a set of objects that share the same specifications of features, constraints,

and semantics. Class is a kind of classifier whose features are attributes and operations.

http://en.wikipedia.org/wiki/Model-driven_architecture
http://en.wikipedia.org/wiki/BPMN
http://en.wikipedia.org/wiki/QVT
http://en.wikipedia.org/wiki/QVT
http://en.wikipedia.org/wiki/ATLAS_Transformation_Language
http://en.wikipedia.org/wiki/INRIA

132 | P a g e

Attributes of a class are represented by instances of property that are owned by the class.

Some of these attributes may represent the navigable ends of binary associations.

Properties

Name The name of class.

Parent The model element that owns the class.

Visibility Determines where the class appears within different name spaces

within the overall model, and its accessibility.

Documentation Description of class.

Abstract If true, the class does not provide a complete declaration and typically

cannot be instantiated. An abstract class is intended to be used by other

classes.

Leaf Indicates whether it is possible to further specialize a class. If the value

is true, then it is not possible to further specialize the class.

Root Indicates whether the class has no ancestors. (true for no ancestors)

Active Determines whether an object specified by this class is active or not. If

true, then the owning class is referred to as an active class. If false,

then such a class is referred to as a passive class.

Business Model Set it to make the class become a "business class"

Attributes Refers to all of the Properties that are direct (i.e., not inherited or

imported) attributes of the class.

Operations An operation is a behavioural feature of a class that specifies the name,

type, parameters, and constraints for invoking an associated behaviour.

Operations here refer to the operations owned by the class.

Template Parameters A Template able Element that has a template signature is a

specification of a template. A template is a parameterized element that

can be used to generate other model elements using Template Binding

relationships. The template parameters for the template signature

specify the formal parameters that will be substituted by actual

parameters (or the default) in a binding.

133 | P a g e

A template parameter is defined in the namespace of the template, but

the template parameter represents a model element that is defined in

the context of the binding.

A template able element can be bound to other templates. This is

represented by the bound element having bindings to the template

signatures of the target templates. In a canonical model a bound

element does not explicitly contain the model element simplied by

expanding the templates it binds to, since those expansions are

regarded as derived. The semantics and well-formedness rules for the

bound element must be evaluated as if the bindings were expanded

with the substitutions of actual elements for formal parameters

Class Code Details Properties of class in implementation (code) level. Settings in this page

is programming language specific, and will affect the code being

generated.

Java Annotations A Java annotation is a metadata that can be added to Java source code

for annotation purposes.

ORM Query Available only to ORM Persistable class, ORM Query lets you define

the ORM Qualifiers and named queries of the class.

There are many tools that can be used in the palette, but that is often used only class.

Generalization

Implementation

Association

Containment

Dependency Link Comment

134 | P a g e

10.3 Class Level Relationship

o Generalization

The Generalization relationship indicates that one of the two related classes (the

subtype) is considered to be a specialized form of the other (the supertype) and

super type is considered as 'Generalization' of subtype. Inpractice, this means that

any instance of the subtype is also an instance of the supertype. An exemplary

tree of generalizations of this form is found in binomial nomenclature: human

beings are a subtype of simian, which are a subtype of mammal, and soon. The

relationship is most easily understood by the phrase 'an A is a B ' (a human is a

mammal, a mammal is an animal).

The UML graphical representation of a Generalization is a hollow triangle shape

on the supertype end of the line (or tree of lines) that connect sit to one or more

subtypes.

The generalization relationship is also known as the inheritance or "is a"

relationship. The supertype in the generalization relationship is also known as the

"parent", superclass, baseclass, or basetype. The subtype in the specialization

relationship is also known as the "child", subclass, derived class, derived type,

inheriting class, or inheriting type.

Note that this relationship bears no resemblance to the biological

parent/childrelationship: the use of these terms is extremely common, but can be

misleading.

 Generalization-Specialization relationship

A is a type of B

E.g."an oak is a type of tree","an automobile is a type of vehicle"

Generalization can only be shown on class diagrams and on Use case

diagrams.

http://en.wikipedia.org/wiki/Binomial_nomenclature
http://en.wikipedia.org/wiki/Human_beings
http://en.wikipedia.org/wiki/Human_beings
http://en.wikipedia.org/wiki/Simian
http://en.wikipedia.org/wiki/Mammal
http://en.wikipedia.org/wiki/Triangle
http://en.wikipedia.org/wiki/Inheritance_(computer_science)
http://en.wikipedia.org/wiki/Supertype
http://en.wikipedia.org/wiki/Subtype
http://en.wikipedia.org/wiki/Use_case_diagram
http://en.wikipedia.org/wiki/Use_case_diagram

135 | P a g e

Instance Level Relationships

o Association

An Association represents a family of links. Binary associations (with two ends)

are normally represented as a line, with each end connected to a class box. Higher

order associations can be drawn with more than two ends. In such cases, the ends

are connected to a central diamond.

An association can be named, and the ends of an association can be a dorned with

role names, ownership indicators, multiplicity, visibility, and other properties.

There are five different types of association. Bi-directional and uni-directional

associations are the most common ones. For instance, a flight class is associated

with a plane class bi-directionally. Associations can only be shown on class

diagrams. Association represents the static relationship shared among the objects

of two classes. Example: "department offers courses", is an association relation.

o Aggregation

Aggregation is a variant of the "has a" or association relationship; aggregation is

more specific than association. It is an association that represents apart-whole or

part-of relationship. As a type of association, an aggregation can be named and

Class diagram showing generalization
between one superclass and two
subclasses

Class diagram example of
association between two
classes

http://en.wikipedia.org/wiki/Association_(object-oriented_programming)
http://en.wikipedia.org/wiki/Aggregation_(object-oriented_programming)

136 | P a g e

have the same adornments that an association can. However, an aggregation may

not involve more than two classes.

Aggregation can occur when a class is a collection or container of other classes,

but where the contained classes do not have a strong life cycle dependency on the

container—essentially, if the container is destroyed, its contents are not.

In UML, it is graphically represented as a hollow diamond shape on the

containing class end of the tree of lines that connect contained class(es) to the

containing class.

o Composition

Composition is a stronger variant of the "owns a" or association relationship;

composition is more specific than aggregation.

Composition usually has a strong life cycle dependency between instances of the

container class and instances of the contained class(es): If the container is

destroyed, normally every instance that it contains is destroyed as well. Note that

a part can (where allowed) be removed from a composite before the composite is

deleted, and thus not be deleted as part of the composite.

The UML graphical representation of a composition relationship is a filled

diamond shape on the containing class end of the tree of lines that connect

contained class(es) to the containing class.

Class diagram showing Aggregation
between two classes

Class diagram showing Composition
between two classes at top and
Aggregation between two classes at
bottom

http://en.wikipedia.org/wiki/Unified_Modeling_Language
http://en.wikipedia.org/wiki/Rhombus
http://en.wikipedia.org/wiki/Object_composition

137 | P a g e

Differences between Composition and Aggregation

When attempting to represent real-world whole-part relationships, e.g., an engine is

part of a car, the composition relationship is most appropriate. However, when

representing software or database relationship, e.g., car model engine ENG01 is part

of a car model CM01, an aggregation relationship is best, as the engine, ENG01

maybe also part of a different car model. Thus the aggregation relationship is often

called "catalog" containment to distinguish it from composition's "physical"

containment.

The whole of a composition must have a multiplicity of 0..1 or 1, indicating that a

part must belong to only one whole; the part may have any multiplicity. For example,

consider University and Department classes. A department belongs to only one

university, so University has multiplicity 1 in the relationship. A university can (and

will likely) have multiple departments, so Department has multiplicity 1..*.

General Relationship

o Dependency

Dependency is a weaker form of relationship which indicates that one class

depends on another because it uses it at some point of time. Dependency exists if

a class is a parameter variable or local variable of a method of another class.

o Multiplicity

The association relationship indicates that (at least) one of the two related classes

makes reference to the other. In contrast with the generalization relationship, this

is most easily understood through the phrase 'A has a B' (a mother cat has kittens,

kittens have a mother cat).

Class diagram showing dependency
between "Car" class and "Wheel" class

http://en.wikipedia.org/wiki/Dependency_(UML)

138 | P a g e

The UML representation of an association is a line with an optional arrow head

indicating the role of the object(s) in the relationship, and an optional notation at

each end indicating the multiplicity of instances of that entity (the number of

objects that participate in the association).

0..1 No instances, or one instance (optional, may)

1 Exactly one instance

0..*or* Zero or more instances

1..* One or more instances (at least one)

2. State Diagram

State chart diagrams, or commonly also called a state diagram used to document the

various conditions/circumstances that could happen to a class and any activity that may

alter the conditions/circumstances.

State diagrams model the transition would usually only happens only in a class.

In general state chart diagram describes a certain class (one class can have more than one

state chart diagram).

Notation State Diagram

139 | P a g e

o State

State notation describing the condition of an entity, and illustrated with blunted

gessquare with state name init.

o Initial State

Initial State is a state in the beginning of an object prior to any changes in

circumstances. Initial State represented by a solid circle. Only one Initial State is

permitted in a diagram.

o Final State

Final State describing the object stopped giving the response to an event. Final

State represented by a solid circle inside an empty circle.

o Event/Transition

A Transition objects describing change of condition caused by an event.

Transition described by an arrow with the name of the event which was written

above, below or along the arrow.

o Operation

An Operation is described in a verb form of the function or the running system.

Operation

Event/ Transition

140 | P a g e

3. Use Case Diagram

Tools commonly used in use case diagrams, among others:

o Actor

o UseCases

4. Sequence Diagram

There are some tools which commonly used. They are:

o Life line

This is a tool to make a life line in a sequence diagram. A life line shows the life

time of a class while sending some messages to the other classes. While the class is

the window, or the grid, or the list, or anything that is not the class from the

database, it will be destroyed in the end of the life line.

o Actor Life line

This is a tool to make a life line for the actor. Its characteristics are same with the

common life line. It sends the messages to the other classes too. The messages are

usually the instructions from the actor while running the system. Remember that it

can‘t be destroyed too.

o Comment

This is a tool to insert any comments.

o Combined Fragment

141 | P a g e

This is a tool to make a combine fragment in a sequence diagram. Combine

fragment groups some messages into a fragment which defines some conditions of

a fragment by use operator.

There are some operators that commonly used. They are:

 alt

It is to make the alternate conditions from a fragment. So, if the first

condition doesn‘t match, it will go to the next condition.

 opt

It is to make a fragment becomes optional.

 loop

It is to make a fragment become slooping the message(s).

5. Generate Code

When you make a class diagram in the Netbeans, you can generate code from the

diagram directly. These are the steps to generate the codes from a class diagram:

o First, make a new project (make sure that you have made the class diagram) by

clicking the New Project (Ctrl+Shift+Nfortheshortcut).

o Then, choose Java Category, choose Java Application, then click Next.

Message

Lifeline
Actor
Lifeline

Combined
Fragment

New Project

142 | P a g e

o Give the Project Name and choose the Project Location, then click Finish.

o Back to your project that contains the class diagram. Right click on the class, and

then choose GenerateCode.

(For the example we create the Student class which has NIM, Name, Semester,

and GPA attribute, and also the Study operation. And it has the subclass which

named Assistant which has Salary attribute and Teach method.)

143 | P a g e

o Choose the Target Project and choose Source Packages to be the

SourceRoot.You can uncheck the Generate Markers for Source File Merging

to make your codes don‘t contain any comment (it is optional). Then, click OK.

o Repeat it for the other classes until all classes are generated to be the codes.

o Now, you can check your Project Explorer, choose your Java Application

project which has been the source for your generated codes. Then, you will see

that the class diagram has been generated to be the codes.

144 | P a g e

o So, it is the Class Diagram and its generated codes.

The
generated
codes from
the class
diagram

Student.java

Assistant.java

145 | P a g e

10.4 Exercise

a) Mention the function of these diagrams below:

 Class Diagram

 State Chart

b) Mention the diference of Life line and Actor Life line in the Sequence diagram!

c) If the system has a Purchase Order Transaction and when the all fields in the form

have been filled, then the Purchase Division can click Submit button to submit the

data to database, or click Cancel button to cancel the transaction, what is the

operators which we must choose to explain this case?

d) What is the diference of Aggregation and Composition?

e) What is the requirements if we want to make some classes to be generalized!

Answer

a) Class Diagram: a tool from UML that modelling the classes which have been take from

the abstraction of the real object in the solutions of the problems in Information System.

State Chart: a tool from UML which used to document the various

conditions/circumstances that could happen to a class and any activity that may alter the

conditions/circumstances.

b) A life line defines a life time of class, grid, list, form, or window and some of them must

be destroyed in the end of sequence. Where as an actor life line defines a life time of an

actor in a sequence diagram and it can‘t be destroyed.

c) ALT operators.

d) Aggregation is a variant of the "has a" or association relationship; aggregation is more

specific than association. Composition is a stronger variant of the "owns a" or association

relationship; composition is more specific than aggregation.

e) The classes must have the same characteristic(s) (whether attributes or operations).

http://en.wikipedia.org/wiki/Aggregation_(object-oriented_programming)
http://en.wikipedia.org/wiki/Object_composition

146 | P a g e

Chapter 11

UML Design

147 | P a g e

11.1 Class Diagram

In software engineering, a class diagram in the Unified Modelling Language (UML) is a

type of static structure diagram that describes the structure of a system by showing the

system's classes, their attributes, operations (or) methods and the relationships between

the classes.

 Overview

The class diagram is the main building block in object oriented modelling. It is used

both for general conceptual modelling of the systematic of the application, and for

detailed modelling translating the models into programming code. The classes in a

class diagram represent both the main objects and or interactions in the application

and the objects to be programmed. In the class diagram these classes are represented

with boxes which contain three parts:

A class with three sections:

o The upper part holds the name of the class

o The middle part contains the attributes of the class

o The bottom part gives the methods or operations the class can take or under take

In the system design of a system, a number of classes are identified and grouped

together in a class diagram which helps to determine the static relations between

those objects. With detailed modeling, the classes of the conceptual design are often

split in to a number of subclasses.

In order to further describe the behavior of systems, these class diagrams can be

complemented by state diagram or UML state machine. Also instead of class

diagrams object role modeling can be used if you just want to model the classes and

their relationships.

http://en.wikipedia.org/wiki/Software_engineering
http://en.wikipedia.org/wiki/Unified_Modeling_Language
http://en.wikipedia.org/wiki/Class_%28computer_science%29
http://en.wikipedia.org/wiki/Object_oriented
http://en.wikipedia.org/wiki/Conceptual_model
http://en.wikipedia.org/wiki/Programming_code
http://en.wikipedia.org/wiki/State_diagram
http://en.wikipedia.org/wiki/UML_state_machine
http://en.wikipedia.org/wiki/Object_role_modeling
http://en.wikipedia.org/wiki/File:BankAccount.jpg

148 | P a g e

 Members

UML provides mechanisms to represent class members, such as attributes and

methods, and additional information about them.

 Visibility

To specify the visibility of a class member (i.e., any attribute or method) there are the

following notations that must be placed before the member's name:

+ Public

- Private

Protected

~ Package

/ Derived

Underline Static

11.2 State Diagram

A state diagram is a type of diagram used in computer science and related fields to

describe the behavior of systems. State diagrams require that the system described is

composed of a finite number of states; sometimes, this is indeed the case, while at other

times this is a reasonable abstraction. There are many forms of state diagrams, which

differ lightly and have differentsemantics.

 Overview

State diagrams are used to give an abstract description of the behavior of a system.

This behavior is analyzed and represented in series of events that could occur in one

or more possible states. Each diagram usually represents objects of a single class and

tracks the different states of its objects through the system.

State diagrams can be used to graphically represent finite state machines. This was

introduced by Taylor Booth in his 1967 book "Sequential Machines and Automata

Theory". Another possible representation is the State transition table.

http://en.wikipedia.org/wiki/Diagram
http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/State_%28computer_science%29
http://en.wikipedia.org/wiki/Abstraction_%28computer_science%29
http://en.wikipedia.org/wiki/Semantics#Computer_science
http://en.wikipedia.org/wiki/Behavior
http://en.wikipedia.org/wiki/System
http://en.wikipedia.org/wiki/Finite_state_machine
http://en.wikipedia.org/wiki/Taylor_Booth
http://en.wikipedia.org/wiki/State_transition_table

149 | P a g e

11.3 UseCaseDiagram

A use case diagram in the Unified Modeling Language (UML) is a type of behavioral

diagram defined by and created from a Use-case analysis. Its purpose is to present a

graphical overview of the functionality provided by a system in terms of actors, their

goals (represented as use cases), and any dependencies between those use cases.

The main purpose of a use case diagram is to show what system functions are performed

for which actor. Roles of the actors in the system can be depicted.

Use Case diagrams are formally included in two modeling languages defined by the

OMG: the Unified Modeling Language (UML) and the Systems Modeling Language

(SysML).

 Diagram Building Block

Interaction among actors is not shown on the use case diagram. If this the system or

use case boundaries should be re-examined. Alternatively, interaction among actors

can be part of the assumptions used in the use case.

o Use cases: A use case describes a sequence of actions that provide something of

measurable value to an actor and is drawn as a horizontal ellipse.

o Actors: An actor is a person, organization, or external system that plays a role in

one or more interactions with the system.

o System boundary boxes (optional): A rectangle is drawn around the use cases,

called the system boundary box, to indicate the scope of system. Anything within

the box represents functionality that is inscope and anything outside the box is

not.

Actor Inheritance

http://en.wikipedia.org/wiki/Unified_Modeling_Language
http://en.wikipedia.org/wiki/Use-case_analysis
http://en.wikipedia.org/wiki/Actor_%28UML%29
http://en.wikipedia.org/wiki/Use_case
http://en.wikipedia.org/wiki/Object_Management_Group
http://en.wikipedia.org/wiki/Unified_Modeling_Language
http://en.wikipedia.org/wiki/Systems_Modeling_Language
http://en.wikipedia.org/wiki/Systems_Modeling_Language

150 | P a g e

 Actor Generalization

One popular relationship between Actors is Generalization/Specialization. This is

useful in defining overlapping roles between actors. The notation is a solid line

ending in a hollow triangle drawn from the specialized to the more general actor.

 Use Case Relationships

Four relationships among use cases are used often in practice:

o Include

In one form of interaction, a given use case may include another. "Include is a

Directed Relationship between two use cases, implying that the behaviour of the

included use case is inserted in to the behaviour of the including use case".

The first use case often depends on the outcome of the included use case. This is

useful for extracting truly common behaviors from multiple use cases in to a

single description. The notation is a dashed arrow from the including to the

included use case, with the label "«include»". This usage resembles a macro

expansion where the included use case behavior is placed in line in the base use

case behavior. There are no parameters or return values. To specify the location in

a flow of events in which the base use case includes the behavior of another, you

simply write include followed by the name of use case you want to include, as in

the following flow for track order.

o Extend

In another form of interaction, a given use case (the extension) may extend

another. This relationship indicates that the behaviour of the extension use case

may be inserted in the extended use case under some conditions. The notation is a

dashed arrow from the extension to the extended use case, with the label

"«extend»". The notes or constraints may be associated with this relationship to

illustrate the conditions under which this behaviour will be executed.

Modellers use the «extend» relationship to indicate use cases that are "optional" to

the base use case. Depending on the modeler's approach "optional" may mean

151 | P a g e

"potentially not executed with the base use case" or it may mean "not required to

achieve the base use case goal".

o Generalization

In the third form of relationship among use cases, a generalization/specialization

relationship exists. A given use case may have common behaviours, requirements,

constraints, and assumptions with a more general use case. In this case, describe

them once, and deal with it in the same way, describing any differences in the

specialized cases. The notation is a solid line ending in a hollow triangle drawn

from the specialized to the more general use case (following the standard

generalization notation).

o Associations

Associations between actors and use cases are indicated in use case diagrams by

solid lines. An association exists whenever an actor is involved with an

interaction described by a use case. Associations are modelled as lines connecting

use cases and actors to one another, with an optional arrow head on one end of the

line. The arrow head is often used to indicate the direction of the initial invocation

of the relationship or to indicate the primary actor within the use case. The arrow

head simply control flow and should not be confused with data flow.

11.4 Sequence Diagram

A sequence diagram in Unified Modeling Language (UML) is a kind of interaction

diagram that show processes operate with one another and in what order. It is a construct

of a Message Sequence Chart.

Sequence diagrams are sometimes called event diagrams, event scenarios, and timing

diagrams.

 Overview

A sequence diagram shows, as parallel vertical lines (life lines), different processesor

objects that live simultaneously, and, as horizontal arrows, the messages exchanged

http://en.wikipedia.org/wiki/Unified_Modeling_Language
http://en.wikipedia.org/wiki/Interaction_diagram
http://en.wikipedia.org/wiki/Interaction_diagram
http://en.wikipedia.org/wiki/Message_Sequence_Chart
http://en.wikipedia.org/wiki/Timing_diagram_%28Unified_Modeling_Language%29
http://en.wikipedia.org/wiki/Timing_diagram_%28Unified_Modeling_Language%29

152 | P a g e

between them, in the order in which they occur. This allows the specification of

simple runtime scenarios in a graphical manner.

For instance, the UML 1.x diagram on the right describes the sequences of messages

of a (simple) restaurant system. This diagram represents a Patron ordering food and

wine, drinking wine then eating the food, and finally paying for the food. The dotted

lines extending down wards indicate the time line. Time flows from top to bottom.

The arrows represent messages (stimuli) from an actor or object to other objects. For

example, the Patron sends message 'pay' to the Cashier. Half arrows indicate a

synchronous method calls.

SimpleRestaurantSequenceDiagram

11.5 Generate Code

In this part, Its going to show how to generate code from existing diagram so that it

can reduce a lot of work if you have an well-defined diagram. Also, it can make sure that

the coding structure of your project will conform as in a diagram.

1. Suppose I have an existing class DicomImage in Model 1 Project as in figure below.

153 | P a g e

2. Before we start, let choose where to save source code file. Let say, I want to put

source code in Source Packages, Dicomproject. (―C:\Documents and

Settings\Linglom\Dicom\src‖)

3. Now, let generate code. Right click on Model 1 Project, select Generate Code…

4. Select destination to put the source code, I use location from2. Click OK.

If you don‘t want to backup file, just uncheck the box.

154 | P a g e

5. If you have just created a diagram, it will ask to save it first. Click OK.

6. When code are generating, you will see the progress in the output window.

7. When it finished, you will see the new file in destination Project was created. Try

open it and you will see some source code that it has generated for you.

155 | P a g e

This tool is useful if you have a clearly well-defined diagram. But keep in mind that

if your diagrams contain some errors, your generated code may effect from that, too.

156 | P a g e

11.6 Exercise

Tiger Air is a flight service company. They have a problem with their business, because it

is not computerized. Their business process is like, customer comes to this company and

can register their information, so they can order the flight ticket(s). When they order the

flight ticket(s), they must pay the ticket(s) based on the destination and the flight type

(Domestic Flight and Overseas Flight). When customer orders the ticket(s), Customer

Service inputs the order to the their database. The flight schedule (whether Domestic

Flight or Overseas Flight) is set by the Administration Division. Administration Division

can set the status of the flight schedule too. It can be delayed, depart, or cancelled.

Exercise 01 – Make a Class Diagram

157 | P a g e

a. Task 01 – Create Project in NetBeans

1. Run NetBeans from Start Menu

2. Open Menu File -> New Project

3. On New Project Window, choose categories UML the choose Projects Java-

Platform Model

4. Then Press Next

5. Enter your project name ―UML Class Diagram‖

6. Browse Location of your project in D:\

158 | P a g e

7. Then Press Finish

8. At Diagram Type, choose Class Diagram

9. Then Press Finish

b. Task 02 – Create Class Customer, FlightOrder, DetailFlightOrder, Flight,

GarudaFlight, LionFlight

1. Drag component Class from Pallete Basic to your worksheet

2. Double Click on the text ―Unnamed‖, then rename the class

159 | P a g e

3. Create attribute from each Class by right click on the class then choose Create

Attributes.

4. Then Double Click the attribute do you have make it then rename it.

5. Delete the operation are made of the attributes and if it appears the window is

deleted, then the check list ―Also delete from the model‖, then select yes.

After
rename

160 | P a g e

6. Then Create the operation from each Class by right click on the class then choose

Create Operation

7. Then Double Click the operation do you have make it then rename it.

8. Then you finished until like this picture

9. Then you finished class for FlightOrder, Plane, DetailFlightOrder,

DomesticFlight, OverseasFlight

c. Task 03 – Create the Association

1. For relationship from Class Customer to Class FlightOrder, choose Class

Customer first until show tools for the relationship

After
rename

161 | P a g e

2. Then choose association and drag it to Class FlightOrder

Then you can give the multiplicity by right click at the relationship, then choose

Labels Both End Multiplicity

Association

162 | P a g e

Then it will show the multiplicity from Class Customer to Class FlightOrder.

If you want to edit the multiplicity, you can double click at the value that you

want to edit.

Then you can make classes that use association relationship.

d. Task 04 – Create Composite

1. For relationship from Class FlightOrder to Class DetailFlightOrder, choose Class

FlightOrder first until show tools for the relationship

163 | P a g e

2. Composition position it was in the association. So, if you want to change it, click

the arrow until show like this picture

Then drag it to the Class DetailFlightOrder

Then you can give the multiplicity by right click at the relationship, then choose

Labels Both End Multiplicity

Composition

164 | P a g e

Then it will show the multiplicity from Class FlightOrder to Class DetailFlightOrder.

If you want to edit the multiplicity, you can double click at the value that you want to

edit.

Then you can make classes that use composition relationship.

e. Task 05 – Create Generalization

1. For relationship from Class DomesticFlight to Class OverseasFlight, choose Class

OverseasFlight first until show tools for the relationship

165 | P a g e

2. Then choose generalization

And drag it to Class DomesticFlight

Generalization

166 | P a g e

Exercise 02 – Make a Use Case Diagram

a. Task 01 – Create Use Case Diagram

1. Right click on the project

2. Then choose New Diagram

3. Then at Diagram Type, choose Use Case Diagram

4. Then Press Finish

167 | P a g e

b. Task 02 – Create Actor

1. Drag the Actor from Pallete Basic to your worksheet

2. Then rename the text ―Unnamed‖ with double click on the text

3. Then make the Actor for Customer Service and Administation

c. Task 03 – Create Use Cases

1. Drag the Use Cases from Pallete Basic to your worksheet

2. Then rename the text ―Unnamed‖ with double click on the text

3. Then make other Use Cases

d. Task 04 – Create Relationship

1. Click on your actor that you want to make relationship until show this tools

168 | P a g e

2. ThenchooseAssociationanddragto―Registration‖usecases

3. ThentheotherAssociationlikeaboveexample

Exercise03–MakeSequenceDiagram

169 | P a g e

a. Task01-CreateNewProjectSequenceDiagram

1. RunNetBeansfromStartMenu

2. OpenMenuFile->NewProject

3. OnNewProjectWindow,choosecategoriesUMLthechooseProjectsJava-

PlatformModel

4. ThenPressNext

5. Enteryourprojectname―UMLSequenceDiagram1‖

6. BrowseLocationofyourprojectinD:\

7. ThenPressFinish

8. AtDiagramType,chooseSequenceDiagram

9. ThenPressFinish

170 | P a g e

171 | P a g e

b. Task02-CreateActorLifeline

1. DragtheActorLifelinefromPallete–Basictoyourworksheet

2. ThenyoucangivethenametoyourActorLifelinewithdoubleclickontherightofthecolon

(:)thengiveitthename

172 | P a g e

c. Task03-CreateMessage

1. OnceclickonyourActorLifelineuntilshowthistools.

2. Thendragittotherightsideuntillikethis

173 | P a g e

3. Then give the name for your message with double click at the right of the colon(:)

then give its name

4. Then give it the name for your message with click on the arrow of your message,

the look at the Properties of the Message. Fill the name property

d. Task 04 – Create Recursive Asynchronous Message

1. Once click on your life line then click create Asynchronous Message

2. Then and point it to itself.

174 | P a g e

3. Then give it the name for your message with click on the arrow of your message,

the look at the Properties of the Message. Fill the name property

e. Task 05 - Create Synchronous Message

1. Drag the life line to your worksheet

2. Then give it the name for your life line with double click on the right of the

colon(:) then give its name

175 | P a g e

3. Then from Customer Registration Window, choose Synchronous Message

4. Then drag it to Customer Life line

176 | P a g e

5. Then give it the name for your message with click on the arrow of your message,

the look at the Properties of the Message. Fill the name property

Remember that the function(the arrow with the black head) must be named with the

parenthesis(e.g: getLastCustomerCode()) and the return value must be named without

the parenthesis(e.g: lastCustomerCode).

f. Task 06 – Create Asynchronous with no Recursive Message

1. Once click on your Actor Life line then click create Asynchronous Message

177 | P a g e

2. Then and point it to Customer Registration Window

3. Then give it the name for your message with click on the arrow of your message,

the look at the Properties of the Message. Fill the name property

178 | P a g e

g. Task 07 – Create Recursive Asynchronous Message for validateCustomerData()

1. Once click on your customer Registration Window life line then click create

Asynchronous Message then and point it to itself.

h. Task 08 – Create Combined Fragment

1. Drag the combined fragment from Pallete–Control to your worksheet then adjust

the width

179 | P a g e

2. Choose the Operator from assert to alt with click on your Combined Fragment

and find the Property that name Operator and change the content

i. Task 09 - Create Asynchronous Message for Click Save

1. Click Administration Actor Life line then choose Asynchronous Message and

drag it to CustomerRegistrationWindow and give the name

Change the name Operator

180 | P a g e

j. Task 09 – Create Asynchronous Message for insert()

1. Once click on your customer RegistrationWindow life line then click create

Asynchronous Message then and point it to Customer life line.

181 | P a g e

k. Task 09 – Create Asynchronous Message for Click Print

1. Once click on your Administration life line then click create Asynchronous

Message then and point it to customer RegistrationWindow.

182 | P a g e

l. Task 10 – Create Message for PrintCustomerCardWindow

1. Once click on your customer RegistrationWindow life line then click Create

Message then and point it between customer RegistrationWindow and Customer.

183 | P a g e

m. Task 11 – Create Asynchronous Message for print()

1. Once click on your customer RegistrationWindow life line then click create

Asynchronous Message then and point it to PrintCustomerCardWindow.

184 | P a g e

n. Task 12 – Create Asynchronous Message for close()

1. Once click on your CustomerRegistrationWindow life line then click create

Asynchronous Message then and point it to PrintCustomerCardWindow.

185 | P a g e

p. Task 13 – Create Asynchronous Message for Click Cancel

1. Once click on your Administration life line then click create Asynchronous

Message then and point it to CustomerRegistrationWindow.

186 | P a g e

q. Task 14 – Create Recursive Asynchronous Message for clear()

1. Once click on your CustomerRegistrationWindow life line then click create

Asynchronous Message then and point it to itself.

187 | P a g e

s. Task 15 - Create Asynchronous Message for exit

1. Once click on your Administration life line then click create Asynchronous

Message then and point it to CustomerRegistrationWindow.

188 | P a g e

t. Task 16 – Create Destroy Life line for CustomerRegistrationWindow

1. Once click on your CustomerRegistrationWindow life line then click Destroy Life

line.

189 | P a g e

u. Task 17 – Create Destroy Life line for PrintCustomerCardWindow

1. Once click on your PrintCustomerCardWindow life line then click Destroy Life

line.

190 | P a g e

v. Task 17 – Create Destroy Interaction Operand

1. Once click on your Combined Fragment life line then right click, choose

Interaction Operand – Add Operand to Bottom.

191 | P a g e

w. Task 17 – Create Interaction Constraint

1. Once click on your Combined Fragment life line then right click, choose

Interaction Operand – Edit Interaction Constraint. Then rename it.

192 | P a g e

x. Task 18 – Create Recursive Asynchronous Message at CustomerRegistrationWindow

y. Task 19 – Create Asynchronous Message to CustomerRegistrationWindow from

Administration

z. Task 20 – Create Destroy for both CustomerRegistration and PrintCustomer Card

Explanation of above Sequence Diagram

1. Administration Division opens the MemberRegistrationWindow to input the Member

Data.

2. The window generates current date.

3. The window retrieves the last Member Code in order to generate Member Code, and then

it generates the code.

4. Administration Division input the member data, and then the window validates the

member data(like phone number must be a number, and etc.).

5. If the registration is finished, Administration Division can click Save button to insert

member data to the database, and then click Print button to print the Member Card(the

window will show the PrintMemberCardWindow, then print the card, after that, it will be

closed automatically).

6. Or if the registration is cancelled, Administration Division can click Cancel button and it

won‘t insert anything or print anything, because it has been cancelled.

7. After it, all of data or field in the window will be cleared and the window will exit.

8. After all of the sequence processes end, the MemberRegistrationWindow and the

PrintMemberCardWindow will bedestroyed.

193 | P a g e

Exercise 04 – Make Sequence Diagram 2

194 | P a g e

a. Task 01 – Create CustomerService Actor Life line

b. Task 02 – Create Message for FlightOrderTransactionWindow

c. Task 03 – Create Recursive Asynchronous Message for generateDate()

195 | P a g e

d. Task 04 – Create Synchronous Message for FlightOrderHeader then give the name

getLastOrderCode() and lastOrderCode

e. Task 05 – Create recursive Asynchronous Message generateCode() for

FlightOrderTransactionWindow

196 | P a g e

f. Task 06 – Create Message from FlightOrderTransactionWindow to FlightSchdule

Grid

g. Task 07 – Create Synchronous for FlightSchedule

197 | P a g e

h. Task 08 – Create Message for TicketGrid from FlightOrderTransactionWindow

i. Task 09 – Create input MemberCode to FlightOrderTransactionWindow from

Customer Service with Asynchronous Message

198 | P a g e

j. Task 10 – Create Synchronous Message from FlightOrderTransactionWindow to

Customer

k. Task 11 – Create Combined Fragment and recursive Asynchronous Message

GenerateTicketCode() for FlightOrderTransactionWindow

199 | P a g e

l. Task 12 – Create Synchronous Message for FlightOrderTransactionWindow to

FlightOrderDetail

m. Task 13 – Create Asynchronous Message to FlightOrderTransactionWindow from

CustomerService

200 | P a g e

n. Task 14 – Create Synchronous Message from FlightOrderTransactionWindow to

FlightSchduleGrid

o. Task 15 – Create Asynchronous Message from CustomerService to

FlightOrderTransactionWindow

201 | P a g e

p. Task 16 – Create Asynchronous Message from FlightOrderTransactionWindow to

TicketGrid

q. Task 17 – Create Asynchronous Message to FlightOrderTransactionWindow from

CustomerService for ChooseTicket

202 | P a g e

r. Task 18 – Create Asynchronous Message to FlightOrderTransactionWindow from

CustomerService for ClickDelete

s. Task 19 – Create Asynchronous Message from FlightOrderTransactionWindow to

TicketGridforremove

203 | P a g e

t. Task 20 – Create Asynchronous Message to FlightOrderTransactionWindow from

CustomerService for ClickSave

u. Task 21 – Create Asynchronous Message from FlightOrderTransactionWindow to

FlightOrderHeader for insertHeader()

204 | P a g e

v. Task 22 – Create Asynchronous Message from FlightOrderTransactionWindow to

TicketGrid for insertDetail()

w. Task 23 – Create Asynchronous Message to FlightOrderDetail from TicketGrid for

insertDetail()

205 | P a g e

x. Task 24 – Create Asynchronous Message to FlightOrderTransactionWindow from

CustomerService for Click Print

y. Task 25 – Create Message from FlightOrderTransactionWindow to

PrintTicketWindow

206 | P a g e

z. Task 26 – Create Asynchronous Message from FlightOrderTransactionWindow to

PrintTicketWindow for print()

aa. Task 27 – Create Asynchronous Message from FlightOrderTransactionWindow to

PrintTicketWindow for close()

207 | P a g e

bb. Task 28 – Create Asynchronous Message to FlightOrderTransactionWindow from

CustomerService for Click Cancel

cc. Task 29 – Create Resursive clear() at FlightOrderTransactionWindow

dd. Task 30 – Create Asynchronous Message to FlightOrderTransactionWindow from

CustomerService for exit

208 | P a g e

ee. Task 31 – Create destory for FlightOrderTransactionWindow, TicketGrid,

FlightSchduleGrid, PrintTicketWindow

Explanation of above Sequence Diagram

1. CustomerServiceDivision opens the FlightOrderTransactionWindow in order to input the

FlightOrderTransaction.

2. The window generates current date.

3. The window retrieves the lastOrderCode in order to generate OrderCode, and then it

generates the code.

4. The window creates the FlightScheduleGrid to show the available flight schedule and

TicketGrid to show the ticket that member orders based on the schedule that they choose.

5. Then, the window retrieves the available flight schedule from the database.

6. After it, CustomerServiceDivision inputs the MemberCode and the window will check

from the database if the code is valid or not.

7. Then, the window will generate the TicketCode and check from the database if there is

this generated code or not.If it‘s in the database, it will be generated again.

209 | P a g e

8. Then, CustomerServiceDivision chooses the available schedule and click Add button to

add the schedule and the generated TicketCode to the TicketGrid.

9. CustomerServiceDivision can delete the ticket that has been added to the grid too by

chooses it from the TicketGrid then click Delete.

10. If the order transaction is finished, CustomerServiceDivision can click Save button to

insert the order transaction data to the database, and then click Print button to print the

tickets(the window will show the PrintTicketWindow, then print each ticket, after that, it

will be closed automatically).

11. Or if the order transaction is cancelled, CustomerServiceDivision can click Cancel button

and it won‘t insert anything or printany thing, because it has been cancelled.

12. After it, all of data or field in the window will be cleared and the window will exit.

13. After all of the sequence processes end, the OrderTransaction Window, Ticket Grid,

FlightSchedule Grid and the Print Ticket Window will be destroyed.

Exercise 05 – Make State Diagram

a. Task 01 – Create New Project SequenceDiagram

1. Run NetBeans from Start Menu, Open MenuFile -> NewProject

2. On New Project Window, choose categories UML the choose Projects Java-

PlatformModel, Then Press Next

3. Enter your project name ―UMLStateDiagram‖

4. Browse Location of your project in D:\

210 | P a g e

5. Then Press Finish

6. At Diagram Type, choose StateDiagram

7. Then Press Finish

b. Task 02 – Create StateDiagram for Administration

1. Drag InitialState from Pallete–Basic to your worksheet

211 | P a g e

2. Then drag SimpleState from Pallete–Basic to your worksheet

3. Then rename the text―Unnamed‖ with doubleclick at that text

4. Then give statetransition from initialstate to Active

And give the operation that you have made from classdiagram with click at the arrow,

and you will see the properties. And give the name it.

State Transition

212 | P a g e

Then create the operation from Active to itself and give the name for the operation.

5. Then drag final state from Pallet–Basic to your worksheet

6. Then give the your assumptions because the operation has been completed from Active to

finalstate. Drag it from Active to finalstate

213 | P a g e

c. Task 03 – Create StateDiagram for CustomerService

1. Create New Diagram with right click on folder Diagram, choose New

2. Then repeat such steps have been performed above

3. Drag InitialState, SimpleState, FinalState to your worksheet,

4. Rename the text from simplestate and give the statetransition

5. Give the operation name that from your classdiagram CustomerService

6. Give the assumptions from inserted to finalstate

214 | P a g e

d. Task 04 – Create StateDiagram for Customer

1. Create New Diagram with right click on folder Diagram,choose New

2. Then repeat such steps have been performed above

3. Drag InitialState, SimpleState, FinalState to your worksheet,

4. Rename the text from simplestate and give the statetransition

5. Give the operation name that from your classdiagram Customer

6. Give the assumptions from registered to finalstate

215 | P a g e

e. Task 05 – Create StateDiagram for DetailFlight

1. Create New Diagram with right click on folder Diagram,choose New

2. Then repeat such steps have been performed above

3. Drag InitialState, SimpleState, FinalState to your worksheet,

4. Rename the text from simplestate and give the statetransition

5. Give the operation name that from your classdiagram DetailFlight

6. Give the assumptions from checked to finalstate

216 | P a g e

f. Task 06 – Create StateDiagram for DomesticFlight

1. Create New Diagram with right click on folder Diagram,choose New

2. Then repeat such steps have been performed above

3. Drag InitialState, SimpleState, FinalState to your worksheet,

4. Rename the text from simplestate and give the statetransition

5. Give the operation name that from your classdiagram DomesticFlight

6. Give the assumptions from active to finalstate

217 | P a g e

g. Task 07 – Create StateDiagram for OverseasFlight

1. Create New Diagram with right click on folder Diagram, choose New

2. Then repeat such steps have been performed above

3. Drag InitialState, SimpleState, FinalState to your worksheet,

4. Rename the text from simplestate and give the statetransition

5. Give the operation name that from your classdiagram OverseasFlight

6. Give the assumptions from checked to finalstate

218 | P a g e

h. Task08 – Create StateDiagram for Plane

1. Create New Diagram with right click on folder Diagram, choose New

2. Then repeat such steps have been performed above

3. Drag InitialState, SimpleState, FinalState to your worksheet,

4. Rename the text from simplestate and give the state transition

5. Give the operation name that from your classdiagram Plane

6. Give the assumptions from active to finalstate

219 | P a g e

i. Task09 – Create StateDiagram for FlightOrder

1. Create New Diagram with right click on folder Diagram, choose New

2. Then repeat such steps have been performed above

3. Drag InitialState, SimpleState, FinalState to your worksheet,

4. Rename the text from simple state and give the state transition

5. Give the operation name that from your class diagram FlightOrder

6. Give the assumptions from added to finalstate

